Commit 20e47518 authored by fsx950223's avatar fsx950223
Browse files

merge upstream

parents 69224aac 67f39ad1
...@@ -43,23 +43,27 @@ Kernel outputs: ...@@ -43,23 +43,27 @@ Kernel outputs:
#include "ck/library/utility/host_tensor_generator.hpp" #include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
using F16 = ck::half_t; using F16 = ck::half_t;
using F32 = float; using F32 = float;
using U16 = unsigned short;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale; using Scale = ck::tensor_operation::element_wise::Scale;
using QKVElementOp = PassThrough; using QKVElementOp = PassThrough;
using YElementOp = PassThrough; using YElementOp = PassThrough;
using VElementOp = Scale;
using DataType = F16; using DataType = F16;
using AccDataType = F32; using AccDataType = F32;
using ShuffleDataType = F32; using ShuffleDataType = F32;
using LSEDataType = F32; using LSEDataType = F32;
using ZDataType = U16;
using Acc0BiasDataType = ck::Tuple<>; using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>; using Acc1BiasDataType = ck::Tuple<>;
...@@ -91,6 +95,7 @@ using DeviceGemmInstance = ...@@ -91,6 +95,7 @@ using DeviceGemmInstance =
NumDimK, NumDimK,
NumDimO, NumDimO,
DataType, DataType,
ZDataType,
LSEDataType, LSEDataType,
Acc0BiasDataType, Acc0BiasDataType,
Acc1BiasDataType, Acc1BiasDataType,
...@@ -182,12 +187,16 @@ using ReferenceGemmGradInstance = ck::tensor_operation::host::ReferenceBatchedGe ...@@ -182,12 +187,16 @@ using ReferenceGemmGradInstance = ck::tensor_operation::host::ReferenceBatchedGe
PassThrough, PassThrough,
PassThrough, PassThrough,
Scale>; Scale>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ushort, DataType, DataType>;
template <typename TensorQ, template <typename TensorQ,
typename TensorK, typename TensorK,
typename TensorV, typename TensorV,
typename TensorS, typename TensorS,
typename TensorP, typename TensorP,
typename TensorZ,
typename TensorY, typename TensorY,
typename TensorLSE = TensorP> typename TensorLSE = TensorP>
void run_attention_fwd_host(const TensorQ& q_g_m_k, void run_attention_fwd_host(const TensorQ& q_g_m_k,
...@@ -197,7 +206,11 @@ void run_attention_fwd_host(const TensorQ& q_g_m_k, ...@@ -197,7 +206,11 @@ void run_attention_fwd_host(const TensorQ& q_g_m_k,
TensorS& s_g_m_n, TensorS& s_g_m_n,
TensorP& p_g_m_n, TensorP& p_g_m_n,
TensorY& y_g_m_o, TensorY& y_g_m_o,
TensorLSE& lse_g_m) TensorLSE& lse_g_m,
TensorP& p_drop_g_m_n,
TensorZ& z_g_m_n,
ushort p_dropout_in_16bits,
float rp_dropout)
{ {
// S = alpha * Q * K^T // S = alpha * Q * K^T
auto k_g_k_n = k_g_n_k.Transpose({0, 2, 1}); auto k_g_k_n = k_g_n_k.Transpose({0, 2, 1});
...@@ -225,11 +238,18 @@ void run_attention_fwd_host(const TensorQ& q_g_m_k, ...@@ -225,11 +238,18 @@ void run_attention_fwd_host(const TensorQ& q_g_m_k,
ref_softmax_invoker.Run(ref_softmax_argument); ref_softmax_invoker.Run(ref_softmax_argument);
// Y = P * V // P_dropped
auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment =
ref_dropout.MakeArgument(z_g_m_n, p_g_m_n, p_drop_g_m_n, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// Y = P_dropout * V
auto ref_gemm1 = ReferenceGemm1Instance{}; auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker(); auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument( auto ref_gemm1_argument = ref_gemm1.MakeArgument(
p_g_m_n, v_g_n_o, y_g_m_o, PassThrough{}, PassThrough{}, PassThrough{}); p_drop_g_m_n, v_g_n_o, y_g_m_o, PassThrough{}, PassThrough{}, PassThrough{});
ref_gemm1_invoker.Run(ref_gemm1_argument); ref_gemm1_invoker.Run(ref_gemm1_argument);
} }
...@@ -256,6 +276,13 @@ int run(int argc, char* argv[]) ...@@ -256,6 +276,13 @@ int run(int argc, char* argv[])
bool input_permute = false; bool input_permute = false;
bool output_permute = false; bool output_permute = false;
float p_drop = 0.2;
float p_dropout = 1 - p_drop;
uint16_t p_dropout_in_16bits = uint16_t(std::floor(p_dropout * 65535.0));
float rp_dropout = 1.0 / p_dropout;
const unsigned long long seed = 1;
const unsigned long long offset = 0;
if(argc == 1) if(argc == 1)
{ {
// use default case // use default case
...@@ -321,6 +348,11 @@ int run(int argc, char* argv[]) ...@@ -321,6 +348,11 @@ int run(int argc, char* argv[])
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // Y layout [G0, M, G1, O] ? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // Y layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // Y layout [G0, G1, M, O] : std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // Y layout [G0, G1, M, O]
std::vector<ck::index_t> z_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> z_gs_ms_ns_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // Z layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // Z layout [G0, G1, M, N]
// The softmax stat log-sum-exp (LSE) is used to speed up softmax calculation in backward pass // The softmax stat log-sum-exp (LSE) is used to speed up softmax calculation in backward pass
// Pi = exp(Si) / sum(exp(S0) + exp(S1) + ...) // Pi = exp(Si) / sum(exp(S0) + exp(S1) + ...)
// = exp(Si) / exp(log(sum(exp() + ...))) // = exp(Si) / exp(log(sum(exp() + ...)))
...@@ -332,6 +364,7 @@ int run(int argc, char* argv[]) ...@@ -332,6 +364,7 @@ int run(int argc, char* argv[])
Tensor<DataType> q_gs_ms_ks(q_gs_ms_ks_lengths, q_gs_ms_ks_strides); Tensor<DataType> q_gs_ms_ks(q_gs_ms_ks_lengths, q_gs_ms_ks_strides);
Tensor<DataType> k_gs_ns_ks(k_gs_ns_ks_lengths, k_gs_ns_ks_strides); Tensor<DataType> k_gs_ns_ks(k_gs_ns_ks_lengths, k_gs_ns_ks_strides);
Tensor<ZDataType> z_gs_ms_ns(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<DataType> v_gs_os_ns(v_gs_os_ns_lengths, v_gs_os_ns_strides); Tensor<DataType> v_gs_os_ns(v_gs_os_ns_lengths, v_gs_os_ns_strides);
Tensor<DataType> y_gs_ms_os(y_gs_ms_os_lengths, y_gs_ms_os_strides); Tensor<DataType> y_gs_ms_os(y_gs_ms_os_lengths, y_gs_ms_os_strides);
Tensor<DataType> ygrad_gs_ms_os(y_gs_ms_os_lengths, y_gs_ms_os_strides); Tensor<DataType> ygrad_gs_ms_os(y_gs_ms_os_lengths, y_gs_ms_os_strides);
...@@ -339,10 +372,12 @@ int run(int argc, char* argv[]) ...@@ -339,10 +372,12 @@ int run(int argc, char* argv[])
std::cout << "q_gs_ms_ks: " << q_gs_ms_ks.mDesc << std::endl; std::cout << "q_gs_ms_ks: " << q_gs_ms_ks.mDesc << std::endl;
std::cout << "k_gs_ns_ks: " << k_gs_ns_ks.mDesc << std::endl; std::cout << "k_gs_ns_ks: " << k_gs_ns_ks.mDesc << std::endl;
std::cout << "z_gs_ms_ks: " << z_gs_ms_ns.mDesc << std::endl;
std::cout << "v_gs_os_ns: " << v_gs_os_ns.mDesc << std::endl; std::cout << "v_gs_os_ns: " << v_gs_os_ns.mDesc << std::endl;
std::cout << "y_gs_ms_os: " << y_gs_ms_os.mDesc << std::endl; std::cout << "y_gs_ms_os: " << y_gs_ms_os.mDesc << std::endl;
std::cout << "lse_gs_ms_os: " << lse_gs_ms.mDesc << std::endl; std::cout << "lse_gs_ms_os: " << lse_gs_ms.mDesc << std::endl;
z_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<DataType>{0});
switch(init_method) switch(init_method)
{ {
case 0: break; case 0: break;
...@@ -366,9 +401,9 @@ int run(int argc, char* argv[]) ...@@ -366,9 +401,9 @@ int run(int argc, char* argv[])
break; break;
case 4: case 4:
q_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<DataType>{1}); q_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<DataType>{1});
k_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<DataType>{}); k_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<DataType>{1});
v_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<DataType>{}); v_gs_os_ns.GenerateTensorValue(GeneratorTensor_1<DataType>{1});
ygrad_gs_ms_os.GenerateTensorValue(GeneratorTensor_1<DataType>{2}); ygrad_gs_ms_os.GenerateTensorValue(GeneratorTensor_1<DataType>{1});
break; break;
case 5: case 5:
q_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<DataType>{1}); q_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<DataType>{1});
...@@ -408,9 +443,11 @@ int run(int argc, char* argv[]) ...@@ -408,9 +443,11 @@ int run(int argc, char* argv[])
// calculate y & log-sum-exp beforehand // calculate y & log-sum-exp beforehand
Tensor<DataType> q_g_m_k({BatchCount, M, K}); Tensor<DataType> q_g_m_k({BatchCount, M, K});
Tensor<DataType> k_g_n_k({BatchCount, N, K}); Tensor<DataType> k_g_n_k({BatchCount, N, K});
Tensor<ZDataType> z_g_m_n({BatchCount, M, N});
Tensor<DataType> v_g_n_o({BatchCount, N, O}); Tensor<DataType> v_g_n_o({BatchCount, N, O});
Tensor<AccDataType> s_g_m_n({BatchCount, M, N}); Tensor<AccDataType> s_g_m_n({BatchCount, M, N});
Tensor<DataType> p_g_m_n({BatchCount, M, N}); Tensor<DataType> p_g_m_n({BatchCount, M, N});
Tensor<DataType> p_drop_g_m_n({BatchCount, M, N});
Tensor<DataType> y_g_m_o({BatchCount, M, O}); Tensor<DataType> y_g_m_o({BatchCount, M, O});
Tensor<LSEDataType> lse_g_m({BatchCount, M}); Tensor<LSEDataType> lse_g_m({BatchCount, M});
...@@ -418,12 +455,25 @@ int run(int argc, char* argv[]) ...@@ -418,12 +455,25 @@ int run(int argc, char* argv[])
[&](auto& self, auto idx) { q_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx); }); [&](auto& self, auto idx) { q_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx); });
k_gs_ns_ks.ForEach( k_gs_ns_ks.ForEach(
[&](auto& self, auto idx) { k_g_n_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx); }); [&](auto& self, auto idx) { k_g_n_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx); });
z_gs_ms_ns.ForEach(
[&](auto& self, auto idx) { z_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx); });
v_gs_os_ns.ForEach( v_gs_os_ns.ForEach(
[&](auto& self, auto idx) { v_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx); }); [&](auto& self, auto idx) { v_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx); });
lse_gs_ms.ForEach( lse_gs_ms.ForEach(
[&](auto& self, auto idx) { lse_g_m(idx[0] * G1 + idx[1], idx[2]) = self(idx); }); [&](auto& self, auto idx) { lse_g_m(idx[0] * G1 + idx[1], idx[2]) = self(idx); });
run_attention_fwd_host(q_g_m_k, k_g_n_k, v_g_n_o, alpha, s_g_m_n, p_g_m_n, y_g_m_o, lse_g_m); run_attention_fwd_host(q_g_m_k,
k_g_n_k,
v_g_n_o,
alpha,
s_g_m_n,
p_g_m_n,
y_g_m_o,
lse_g_m,
p_drop_g_m_n,
z_g_m_n,
p_dropout_in_16bits,
rp_dropout);
y_gs_ms_os.ForEach( y_gs_ms_os.ForEach(
[&](auto& self, auto idx) { self(idx) = y_g_m_o(idx[0] * G1 + idx[1], idx[2], idx[3]); }); [&](auto& self, auto idx) { self(idx) = y_g_m_o(idx[0] * G1 + idx[1], idx[2], idx[3]); });
...@@ -433,6 +483,7 @@ int run(int argc, char* argv[]) ...@@ -433,6 +483,7 @@ int run(int argc, char* argv[])
// qkv gradients have the same descriptor as with qkv // qkv gradients have the same descriptor as with qkv
DeviceMem q_device_buf(sizeof(DataType) * q_gs_ms_ks.mDesc.GetElementSpaceSize()); DeviceMem q_device_buf(sizeof(DataType) * q_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem k_device_buf(sizeof(DataType) * k_gs_ns_ks.mDesc.GetElementSpaceSize()); DeviceMem k_device_buf(sizeof(DataType) * k_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem z_device_buf(sizeof(ZDataType) * z_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem v_device_buf(sizeof(DataType) * v_gs_os_ns.mDesc.GetElementSpaceSize()); DeviceMem v_device_buf(sizeof(DataType) * v_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem y_device_buf(sizeof(DataType) * y_gs_ms_os.mDesc.GetElementSpaceSize()); DeviceMem y_device_buf(sizeof(DataType) * y_gs_ms_os.mDesc.GetElementSpaceSize());
DeviceMem lse_device_buf(sizeof(LSEDataType) * lse_gs_ms.mDesc.GetElementSpaceSize()); DeviceMem lse_device_buf(sizeof(LSEDataType) * lse_gs_ms.mDesc.GetElementSpaceSize());
...@@ -443,6 +494,7 @@ int run(int argc, char* argv[]) ...@@ -443,6 +494,7 @@ int run(int argc, char* argv[])
q_device_buf.ToDevice(q_gs_ms_ks.mData.data()); q_device_buf.ToDevice(q_gs_ms_ks.mData.data());
k_device_buf.ToDevice(k_gs_ns_ks.mData.data()); k_device_buf.ToDevice(k_gs_ns_ks.mData.data());
z_device_buf.ToDevice(z_gs_ms_ns.mData.data());
v_device_buf.ToDevice(v_gs_os_ns.mData.data()); v_device_buf.ToDevice(v_gs_os_ns.mData.data());
y_device_buf.ToDevice(y_gs_ms_os.mData.data()); y_device_buf.ToDevice(y_gs_ms_os.mData.data());
lse_device_buf.ToDevice(lse_gs_ms.mData.data()); lse_device_buf.ToDevice(lse_gs_ms.mData.data());
...@@ -450,11 +502,59 @@ int run(int argc, char* argv[]) ...@@ -450,11 +502,59 @@ int run(int argc, char* argv[])
kgrad_device_buf.SetZero(); kgrad_device_buf.SetZero();
vgrad_device_buf.SetZero(); vgrad_device_buf.SetZero();
auto gemm = DeviceGemmInstance{}; auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker(); auto invoker = gemm.MakeInvoker();
// get z matrix
{
auto argument = gemm.MakeArgument(
static_cast<DataType*>(q_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(k_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(z_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(v_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(y_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(ygrad_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(qgrad_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(kgrad_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(vgrad_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
q_gs_ms_ks_lengths,
q_gs_ms_ks_strides,
k_gs_ns_ks_lengths,
k_gs_ns_ks_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
v_gs_os_ns_lengths,
v_gs_os_ns_strides,
y_gs_ms_os_lengths,
y_gs_ms_os_strides,
lse_gs_ms_lengths,
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
QKVElementOp{},
QKVElementOp{},
Scale{alpha},
QKVElementOp{},
YElementOp{},
p_drop,
std::tuple<unsigned long long, unsigned long long>(seed, offset));
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
invoker.Run(argument, StreamConfig{nullptr, false});
}
// not need output z matrix
auto argument = gemm.MakeArgument( auto argument = gemm.MakeArgument(
static_cast<DataType*>(q_device_buf.GetDeviceBuffer()), static_cast<DataType*>(q_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(k_device_buf.GetDeviceBuffer()), static_cast<DataType*>(k_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr), // set to nullptr
static_cast<DataType*>(v_device_buf.GetDeviceBuffer()), static_cast<DataType*>(v_device_buf.GetDeviceBuffer()),
static_cast<DataType*>(y_device_buf.GetDeviceBuffer()), static_cast<DataType*>(y_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()), static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
...@@ -468,6 +568,8 @@ int run(int argc, char* argv[]) ...@@ -468,6 +568,8 @@ int run(int argc, char* argv[])
q_gs_ms_ks_strides, q_gs_ms_ks_strides,
k_gs_ns_ks_lengths, k_gs_ns_ks_lengths,
k_gs_ns_ks_strides, k_gs_ns_ks_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
v_gs_os_ns_lengths, v_gs_os_ns_lengths,
v_gs_os_ns_strides, v_gs_os_ns_strides,
y_gs_ms_os_lengths, y_gs_ms_os_lengths,
...@@ -481,15 +583,11 @@ int run(int argc, char* argv[]) ...@@ -481,15 +583,11 @@ int run(int argc, char* argv[])
QKVElementOp{}, QKVElementOp{},
Scale{alpha}, Scale{alpha},
QKVElementOp{}, QKVElementOp{},
YElementOp{}); YElementOp{},
p_drop,
if(!gemm.IsSupportedArgument(argument)) std::tuple<unsigned long long, unsigned long long>(seed, offset));
{ kgrad_device_buf.SetZero(); // reset global accum buffer and rerun
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl; vgrad_device_buf.SetZero();
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
// 5 GEMM ops in total: // 5 GEMM ops in total:
...@@ -511,9 +609,32 @@ int run(int argc, char* argv[]) ...@@ -511,9 +609,32 @@ int run(int argc, char* argv[])
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl; << gemm.GetTypeString() << std::endl;
// copy z matirx data form device
z_device_buf.FromDevice(z_g_m_n.mData.data());
// std::cout << "z_g_m_n ref:\n" << z_g_m_n;
bool pass = true; bool pass = true;
if(do_verification) if(do_verification)
{ {
// run fowad again for y, cause z_g_m_n update
run_attention_fwd_host(q_g_m_k,
k_g_n_k,
v_g_n_o,
alpha,
s_g_m_n,
p_g_m_n,
y_g_m_o,
lse_g_m,
p_drop_g_m_n,
z_g_m_n,
p_dropout_in_16bits,
rp_dropout);
y_gs_ms_os.ForEach([&](auto& self, auto idx) {
self(idx) = y_g_m_o(idx[0] * G1 + idx[1], idx[2], idx[3]);
});
y_device_buf.ToDevice(y_gs_ms_os.mData.data());
// call kernel again
kgrad_device_buf.SetZero(); // reset global accum buffer and rerun kgrad_device_buf.SetZero(); // reset global accum buffer and rerun
vgrad_device_buf.SetZero(); vgrad_device_buf.SetZero();
invoker.Run(argument, StreamConfig{nullptr, false}); invoker.Run(argument, StreamConfig{nullptr, false});
...@@ -523,6 +644,7 @@ int run(int argc, char* argv[]) ...@@ -523,6 +644,7 @@ int run(int argc, char* argv[])
Tensor<DataType> vgrad_g_n_o({BatchCount, N, O}); Tensor<DataType> vgrad_g_n_o({BatchCount, N, O});
Tensor<DataType> sgrad_g_m_n({BatchCount, M, N}); Tensor<DataType> sgrad_g_m_n({BatchCount, M, N});
Tensor<DataType> pgrad_g_m_n({BatchCount, M, N}); Tensor<DataType> pgrad_g_m_n({BatchCount, M, N});
Tensor<DataType> pgrad_drop_g_m_n({BatchCount, M, N});
Tensor<DataType> ygrad_g_m_o({BatchCount, M, O}); Tensor<DataType> ygrad_g_m_o({BatchCount, M, O});
Tensor<DataType> ygrad_dot_y_g_m({BatchCount, M}); Tensor<DataType> ygrad_dot_y_g_m({BatchCount, M});
...@@ -544,20 +666,26 @@ int run(int argc, char* argv[]) ...@@ -544,20 +666,26 @@ int run(int argc, char* argv[])
auto ref_gemm_grad_invoker = ref_gemm_grad.MakeInvoker(); auto ref_gemm_grad_invoker = ref_gemm_grad.MakeInvoker();
using RefGemmGradArg = ReferenceGemmGradInstance::Argument; using RefGemmGradArg = ReferenceGemmGradInstance::Argument;
// dP = dY * V^T // dP_dropout = dY * V^T
auto v_g_o_n = v_g_n_o.Transpose({0, 2, 1}); auto v_g_o_n = v_g_n_o.Transpose({0, 2, 1});
ref_gemm_grad_invoker.Run(RefGemmGradArg{ ref_gemm_grad_invoker.Run(RefGemmGradArg{
ygrad_g_m_o, v_g_o_n, pgrad_g_m_n, PassThrough{}, PassThrough{}, Scale{1.f}}); ygrad_g_m_o, v_g_o_n, pgrad_drop_g_m_n, PassThrough{}, PassThrough{}, Scale{1.f}});
#if PRINT_HOST #if PRINT_HOST
{ {
std::cout << "===== dP = dY * V^T\n"; std::cout << "===== dP = dY * V^T\n";
std::cout << "ygrad_g_m_o ref:\n" << ygrad_g_m_o; std::cout << "ygrad_drop_g_m_o ref:\n" << ygrad_drop_g_m_n;
std::cout << "v_g_o_n ref:\n" << v_g_o_n; std::cout << "v_g_o_n ref:\n" << v_g_o_n;
std::cout << "pgrad_g_m_n ref:\n" << pgrad_g_m_n; std::cout << "pgrad_drop_g_m_n ref:\n" << pgrad_drop_g_m_n;
} }
#endif #endif
// dP = dP_dropout x Z
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i) auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment = ref_dropout.MakeArgument(
z_g_m_n, pgrad_drop_g_m_n, pgrad_g_m_n, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
sgrad_g_m_n.ForEach([&](auto& self, auto idx_gmn) { sgrad_g_m_n.ForEach([&](auto& self, auto idx_gmn) {
float ygrad_dot_y = 0; float ygrad_dot_y = 0;
for(int o = 0; o < O; o++) for(int o = 0; o < O; o++)
...@@ -578,15 +706,14 @@ int run(int argc, char* argv[]) ...@@ -578,15 +706,14 @@ int run(int argc, char* argv[])
std::cout << "sgrad_g_m_n ref:\n" << sgrad_g_m_n; std::cout << "sgrad_g_m_n ref:\n" << sgrad_g_m_n;
} }
#endif #endif
// dV = P_drop^T * dY
// dV = P^T * dY auto p_drop_g_n_m = p_drop_g_m_n.Transpose({0, 2, 1});
auto p_g_n_m = p_g_m_n.Transpose({0, 2, 1});
ref_gemm_grad_invoker.Run(RefGemmGradArg{ ref_gemm_grad_invoker.Run(RefGemmGradArg{
p_g_n_m, ygrad_g_m_o, vgrad_g_n_o, PassThrough{}, PassThrough{}, Scale{1.f}}); p_drop_g_n_m, ygrad_g_m_o, vgrad_g_n_o, PassThrough{}, PassThrough{}, Scale{1.0f}});
#if PRINT_HOST #if PRINT_HOST
{ {
std::cout << "===== dV = P^T * dY\n"; std::cout << "===== dV = P^T * dY\n";
std::cout << "p_g_n_m ref:\n" << p_g_n_m; std::cout << "p_drop_g_n_m ref:\n" << p_drop_g_n_m;
std::cout << "ygrad_g_m_o ref:\n" << ygrad_g_m_o; std::cout << "ygrad_g_m_o ref:\n" << ygrad_g_m_o;
std::cout << "vgrad_g_n_o ref:\n" << vgrad_g_n_o; std::cout << "vgrad_g_n_o ref:\n" << vgrad_g_n_o;
} }
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_forward_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using ZDataType = U16;
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
256, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
2, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: bf16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, bf16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: bf16 in, bf16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_batched_multihead_attention_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_multihead_attention_forward_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using U16 = unsigned short;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ZDataType = U16;
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
256, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
2, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_batched_multihead_attention_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
...@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g ...@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp" #include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
......
...@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g ...@@ -17,7 +17,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp" #include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_forward_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using U16 = unsigned short;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using ZDataType = U16;
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: bf16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, bf16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: bf16 in, bf16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_grouped_multihead_attention_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_multihead_attention_forward_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using U16 = unsigned short;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using B0DataType = F16;
using B1DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ZDataType = U16;
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
ZDataType,
LSEDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
// Ref dropout
using ReferenceDropoutInstance =
ck::tensor_operation::host::ReferenceDropout<ZDataType, ADataType, ADataType>;
#include "run_grouped_multihead_attention_forward.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck::index_t M = 1000; // 120
ck::index_t N = 1000; // 1000
ck::index_t K = 64;
ck::index_t O = 64;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck::index_t G0 = 7;
ck::index_t G1 = 13;
float alpha = 1;
bool input_permute = false;
bool output_permute = true;
float p_drop = 0.1;
float p_dropout = 1 - p_drop;
uint16_t p_dropout_in_16bits = uint16_t(std::floor(p_dropout * 65535.0));
float rp_dropout = 1.0 / p_dropout;
const unsigned long long seed = 1;
const unsigned long long offset = 0;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 13)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
G0 = std::stoi(argv[8]);
G1 = std::stoi(argv[9]);
alpha = std::stof(argv[10]);
input_permute = std::stoi(argv[11]);
output_permute = std::stoi(argv[12]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 11: M, N, K, O, G0, G1\n");
printf("arg10: scale (alpha)\n");
printf("arg11 to 12: input / output permute\n");
exit(0);
}
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
std::vector<ck::index_t> z_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> z_gs_ms_ns_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // Z layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // Z layout [G0, G1, M, N]
std::vector<ck::index_t> lse_gs_ms_lengths{G0, G1, M};
std::vector<ck::index_t> lse_gs_ms_strides =
std::vector<ck::index_t>{G1 * M, M, 1}; // LSE layout [G0, G1, M]
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<ZDataType> z_gs_ms_ns(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<LSEDataType> lse_gs_ms_host_result(lse_gs_ms_lengths, lse_gs_ms_strides);
Tensor<LSEDataType> lse_gs_ms_device_result(lse_gs_ms_lengths, lse_gs_ms_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
std::cout << "z_gs_ms_ns: " << z_gs_ms_ns.mDesc << std::endl;
std::cout << "lse_gs_ms_os: " << lse_gs_ms_host_result.mDesc << std::endl;
z_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<ZDataType>{0});
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<2>{});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
DeviceMem z_device_buf(sizeof(ZDataType) * z_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem lse_device_buf(sizeof(LSEDataType) *
lse_gs_ms_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
// TODO ANT: replace array with vector?
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(z_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be at least the number of
// elements on a thread
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
ck::index_t BatchCount = G0 * G1;
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
z_device_buf.FromDevice(z_gs_ms_ns.mData.data());
lse_device_buf.FromDevice(lse_gs_ms_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<ADataType> a1_g_m_n_drop({G0 * G1, M, N});
Tensor<LSEDataType> lse_g_m_host_result(
{BatchCount, M}); // scratch object after max + ln(sum)
Tensor<ZDataType> z_g_m_n({G0 * G1, M, N});
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
z_gs_ms_ns.ForEach([&](auto& self, auto idx) {
z_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2}, &lse_g_m_host_result);
ref_softmax_invoker.Run(ref_softmax_argument);
// dropout after softmax
auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment = ref_dropout.MakeArgument(
z_g_m_n, a1_g_m_n, a1_g_m_n_drop, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// gemm1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n_drop,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
lse_gs_ms_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = lse_g_m_host_result(g, idx[2]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results c!",
rtol,
atol) &&
ck::utils::check_err(lse_gs_ms_device_result.mData,
lse_gs_ms_host_result.mData,
"Error: Incorrect results lse!",
rtol,
atol)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
bool input_permute = false;
bool output_permute = true;
float p_drop = 0.2;
float p_dropout = 1 - p_drop;
uint16_t p_dropout_in_16bits = uint16_t(std::floor(p_dropout * 65535.0));
float rp_dropout = 1.0 / p_dropout;
const unsigned long long seed = 1;
const unsigned long long offset = 0;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 6)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
input_permute = std::stoi(argv[4]);
output_permute = std::stoi(argv[5]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 5: input / output permute\n");
exit(0);
}
float alpha = 1; // scaling after 1st gemm
std::size_t group_count = 8;
// Problem descs
std::vector<DeviceGemmInstance::ProblemDesc> problem_descs;
std::vector<const void*> p_a;
std::vector<const void*> p_b0;
std::vector<const void*> p_b1;
std::vector<void*> p_c;
std::vector<void*> p_z;
std::vector<void*> p_lse;
std::vector<std::vector<int>> g0_g1_m_n_k_o;
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<B0DataType>> b0_tensors;
std::vector<Tensor<B1DataType>> b1_tensors;
std::vector<Tensor<CDataType>> c_tensors;
std::vector<Tensor<ZDataType>> z_tensors;
std::vector<Tensor<LSEDataType>> lse_tensors;
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device;
std::vector<DeviceMemPtr> b0_tensors_device;
std::vector<DeviceMemPtr> b1_tensors_device;
std::vector<DeviceMemPtr> c_tensors_device;
std::vector<DeviceMemPtr> z_tensors_device;
std::vector<DeviceMemPtr> lse_tensors_device;
std::size_t flop = 0, num_byte = 0;
// std::cout << "group count " << group_count << ". printing first 4 groups\n";
for(std::size_t i = 0; i < group_count; i++)
{
int M = 128 * (rand() % 8 + 1);
int N = 128 * (rand() % 8 + 1);
int K = 128;
int O = 128;
int G0 = rand() % 3 + 1;
int G1 = rand() % 5 + 1;
g0_g1_m_n_k_o.push_back({G0, G1, M, N, K, O});
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides =
input_permute
? std::vector<ck::index_t>{M * G1 * K, K, G1 * K, 1} // A layout [G0, M, G1, K]
: std::vector<ck::index_t>{G1 * M * K, M * K, K, 1}; // A layout [G0, G1, M, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * K, K, G1 * K, 1} // B0 layout [G0, N, G1, K]
: std::vector<ck::index_t>{G1 * N * K, N * K, K, 1}; // B0 layout [G0, G1, N, K]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides =
input_permute
? std::vector<ck::index_t>{N * G1 * O, O, 1, G1 * O} // B1 layout [G0, N, G1, O]
: std::vector<ck::index_t>{G1 * N * O, N * O, 1, O}; // B1 layout [G0, G1, N, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * O, O, G1 * O, 1} // C layout [G0, M, G1, O]
: std::vector<ck::index_t>{G1 * M * O, M * O, O, 1}; // C layout [G0, G1, M, O]
std::vector<ck::index_t> z_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> z_gs_ms_ns_strides =
output_permute
? std::vector<ck::index_t>{M * G1 * N, N, G1 * N, 1} // Z layout [G0, M, G1, N]
: std::vector<ck::index_t>{G1 * M * N, M * N, N, 1}; // Z layout [G0, G1, M, N]
std::vector<ck::index_t> lse_gs_ms_lengths{G0, G1, M};
std::vector<ck::index_t> lse_gs_ms_strides =
std::vector<ck::index_t>{G1 * M, M, 1}; // LSE layout [G0, G1, M]
problem_descs.push_back({a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
lse_gs_ms_strides,
{}, // acc0_biases_gs_ms_ns_lengths
{}, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}}); // acc1_biases_gs_ms_os_strides
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<ZDataType> z_gs_ms_ns(z_gs_ms_ns_lengths, z_gs_ms_ns_strides);
Tensor<LSEDataType> lse_gs_ms_device_result(lse_gs_ms_lengths, lse_gs_ms_strides);
int Batch = G0 * G1;
flop += (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * Batch;
num_byte += (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
Batch;
if(i < 4)
{
std::cout << "a_gs_ms_ks[" << i << "]: " << a_gs_ms_ks.mDesc << ", "
<< "b0_gs_ns_ks[" << i << "]: " << b0_gs_ns_ks.mDesc << ", "
<< "b1_gs_os_ns[" << i << "]: " << b1_gs_os_ns.mDesc << ", "
<< "c_gs_ms_os[" << i << "]: " << c_gs_ms_os_device_result.mDesc << ", "
<< "z_gs_ms_ns[" << i << "]: " << z_gs_ms_ns.mDesc << ", "
<< "lse_gs_ms_os[" << i << "]: " << lse_gs_ms_device_result.mDesc
<< std::endl;
}
z_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<ZDataType>{0});
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
a_tensors.push_back(a_gs_ms_ks);
b0_tensors.push_back(b0_gs_ns_ks);
b1_tensors.push_back(b1_gs_os_ns);
c_tensors.push_back(c_gs_ms_os_device_result);
z_tensors.push_back(z_gs_ms_ns);
lse_tensors.push_back(lse_gs_ms_device_result);
a_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize()));
b0_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize()));
b1_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize()));
c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(CDataType) * c_gs_ms_os_device_result.mDesc.GetElementSpaceSize()));
z_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(ZDataType) * z_gs_ms_ns.mDesc.GetElementSpaceSize()));
lse_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(LSEDataType) * lse_gs_ms_device_result.mDesc.GetElementSpaceSize()));
a_tensors_device[i]->ToDevice(a_gs_ms_ks.mData.data());
b0_tensors_device[i]->ToDevice(b0_gs_ns_ks.mData.data());
b1_tensors_device[i]->ToDevice(b1_gs_os_ns.mData.data());
p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_b0.push_back(b0_tensors_device[i]->GetDeviceBuffer());
p_b1.push_back(b1_tensors_device[i]->GetDeviceBuffer());
p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
p_z.push_back(z_tensors_device[i]->GetDeviceBuffer());
p_lse.push_back(lse_tensors_device[i]->GetDeviceBuffer());
}
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(p_a,
p_b0,
p_b1,
p_c,
p_z,
p_lse,
{}, // p_acc0_biases
{}, // p_acc1_biases
problem_descs,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op,
p_drop, // dropout ratio
{seed, offset}); // dropout random seed and offset, offset should be
// at least the number of elements on a thread
// specify workspace for problem_desc
DeviceMem problem_desc_workspace(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, problem_desc_workspace.GetDeviceBuffer());
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
for(std::size_t i = 0; i < group_count; i++)
{
const int& G0 = g0_g1_m_n_k_o[i][0];
const int& G1 = g0_g1_m_n_k_o[i][1];
const int& M = g0_g1_m_n_k_o[i][2];
const int& N = g0_g1_m_n_k_o[i][3];
const int& K = g0_g1_m_n_k_o[i][4];
const int& O = g0_g1_m_n_k_o[i][5];
const auto& c_gs_ms_os_lengths = problem_descs[i].c_gs_ms_os_lengths;
const auto& c_gs_ms_os_strides = problem_descs[i].c_gs_ms_os_strides;
const auto& lse_gs_ms_lengths = problem_descs[i].lse_gs_ms_lengths;
const auto& lse_gs_ms_strides = problem_descs[i].lse_gs_ms_strides;
const auto& a_gs_ms_ks = a_tensors[i];
const auto& b0_gs_ns_ks = b0_tensors[i];
const auto& b1_gs_os_ns = b1_tensors[i];
auto& c_gs_ms_os_device_result = c_tensors[i];
auto& z_gs_ms_ns_device_result = z_tensors[i];
auto& lse_gs_ms_device_result = lse_tensors[i];
auto& c_gs_ms_os_device_buf = *c_tensors_device[i];
auto& z_gs_ms_ns_device_buf = *z_tensors_device[i];
auto& lse_gs_ms_device_buf = *lse_tensors_device[i];
c_gs_ms_os_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
z_gs_ms_ns_device_buf.FromDevice(z_gs_ms_ns_device_result.mData.data());
lse_gs_ms_device_buf.FromDevice(lse_gs_ms_device_result.mData.data());
Tensor<ADataType> a_g_m_k({G0 * G1, M, K});
Tensor<B0DataType> b0_g_k_n({G0 * G1, K, N});
Tensor<B1DataType> b1_g_n_o({G0 * G1, N, O});
Tensor<AccDataType> acc0_g_m_n({G0 * G1, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({G0 * G1, M, N}); // scratch object after softmax
Tensor<ADataType> a1_g_m_n_drop({G0 * G1, M, N}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result({G0 * G1, M, O}); // scratch object after gemm1
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<ZDataType> z_g_m_n({G0 * G1, M, N});
Tensor<LSEDataType> lse_g_m_host_result({G0 * G1, M}); // scratch object after gemm1
Tensor<LSEDataType> lse_gs_ms_host_result(lse_gs_ms_lengths, lse_gs_ms_strides);
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
z_gs_ms_ns_device_result.ForEach([&](auto& self, auto idx) {
z_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
// gemm 0
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
// masking
const auto mask = DeviceGemmInstance::C0MatrixMask(N);
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(mask.IsMaskedElement(idx[1], idx[2]))
self(idx) = -ck::NumericLimits<float>::Infinity();
});
// softmax
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument =
ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2}, &lse_g_m_host_result);
ref_softmax_invoker.Run(ref_softmax_argument);
// printf("print z_g_m_n \n");
// z_g_m_n.ForEach([&](auto& self, auto idx) {printf("%u ", self(idx));});
// dropout after softmax
auto ref_dropout = ReferenceDropoutInstance{};
auto ref_dropout_invoker = ref_dropout.MakeInvoker();
auto ref_dropout_argment = ref_dropout.MakeArgument(
z_g_m_n, a1_g_m_n, a1_g_m_n_drop, p_dropout_in_16bits, rp_dropout);
ref_dropout_invoker.Run(ref_dropout_argment);
// gemm 1
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(a1_g_m_n_drop,
b1_g_n_o,
c_g_m_o_host_result,
PassThrough{},
b1_element_op,
c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
lse_gs_ms_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = lse_g_m_host_result(g, idx[2]);
});
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
// bool pass_ =
// ck::utils::check_err(c_gs_ms_os_device_result.mData,
// c_gs_ms_os_host_result.mData);
bool pass_ = ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results c!",
rtol,
atol) &&
ck::utils::check_err(lse_gs_ms_device_result.mData,
lse_gs_ms_host_result.mData,
"Error: Incorrect results lse!",
rtol,
atol);
pass &= pass_;
}
if(pass)
{
std::cout << "Verification passed." << std::endl;
}
}
return pass ? 0 : 1;
}
...@@ -118,7 +118,7 @@ ...@@ -118,7 +118,7 @@
#define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0 #define CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK 0
#endif #endif
#define CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK 1 #define CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK 1
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK 1 #define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK 0
#define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK 1 #define CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK 1
// experimental feature: in-regsiter sub-dword transpose // experimental feature: in-regsiter sub-dword transpose
...@@ -170,6 +170,9 @@ ...@@ -170,6 +170,9 @@
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0 #define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0
#endif // __gfx908__ #endif // __gfx908__
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
namespace ck { namespace ck {
enum struct InMemoryDataOperationEnum enum struct InMemoryDataOperationEnum
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/philox_rand.hpp"
namespace ck {
template <typename DataType, typename ThreadSliceDesc_M_K>
struct BlockwiseDropout
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t MRepeat = ThreadSliceDesc_M_K{}.GetLength(I0);
static constexpr index_t KRepeat = ThreadSliceDesc_M_K{}.GetLength(I1);
template <typename CThreadBuffer, bool using_sign_bit = false>
__host__ __device__ void ApplyDropout(CThreadBuffer& in_thread_buf, ck::philox ph)
{
auto execute_dropout = [&](bool keep, DataType val) {
if constexpr(using_sign_bit)
return keep ? val : -val;
else
return keep ? val * p_dropout_rescale : float(0);
};
constexpr int tmp_size = MRepeat * KRepeat;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_8x16((tmp + i * 8));
}
block_sync_lds();
int tmp_index = 0;
static_for<0, MRepeat, 1>{}([&](auto iM) {
static_for<0, KRepeat, 1>{}([&](auto iK) {
auto offset = Number<ThreadSliceDesc_M_K{}.CalculateOffset(make_tuple(iM, iK))>{};
in_thread_buf(offset) =
execute_dropout(tmp[tmp_index] <= p_dropout_16bits, in_thread_buf(offset));
tmp_index = tmp_index + 1;
});
});
}
template <typename CThreadBuffer, typename ZThreadBuffer, bool using_sign_bit = false>
__host__ __device__ void
ApplyDropout(CThreadBuffer& in_thread_buf, ck::philox ph, ZThreadBuffer& z_thread_buf)
{
auto execute_dropout = [&](bool keep, DataType val) {
if constexpr(using_sign_bit)
return keep ? val : -val;
else
return keep ? val * p_dropout_rescale : float(0);
};
constexpr int tmp_size = MRepeat * KRepeat;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_8x16((tmp + i * 8));
}
block_sync_lds();
int tmp_index = 0;
static_for<0, MRepeat, 1>{}([&](auto iM) {
static_for<0, KRepeat, 1>{}([&](auto iK) {
auto offset = Number<ThreadSliceDesc_M_K{}.CalculateOffset(make_tuple(iM, iK))>{};
in_thread_buf(offset) =
execute_dropout(tmp[tmp_index] <= p_dropout_16bits, in_thread_buf(offset));
z_thread_buf(offset) = tmp[tmp_index];
tmp_index = tmp_index + 1;
});
});
}
ushort p_dropout_16bits;
DataType p_dropout_rescale;
};
} // namespace ck
...@@ -864,6 +864,16 @@ struct BlockwiseGemmXdlops_v2 ...@@ -864,6 +864,16 @@ struct BlockwiseGemmXdlops_v2
{ {
} }
__device__ void SetABlockStartWindow(Tuple4 a_origin = CalculateAThreadOriginDataIndex())
{
a_thread_copy_.SetSrcCoord(a_origin);
}
__device__ void SetBBlockStartWindow(Tuple4 b_origin = CalculateBThreadOriginDataIndex())
{
b_thread_copy_.SetSrcCoord(b_origin);
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl' // transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4() __host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{ {
......
...@@ -3,7 +3,6 @@ ...@@ -3,7 +3,6 @@
#pragma once #pragma once
#include <cmath>
#include <string> #include <string>
#include <sstream> #include <sstream>
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include <iostream> #include <iostream>
#include <vector> #include <vector>
#include <tuple>
#include "device_base.hpp" #include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp" #include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
...@@ -65,6 +66,67 @@ struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator ...@@ -65,6 +66,67 @@ struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename ZDataType,
typename LSEDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename AElementwiseOperation,
typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
MaskingSpecialization MaskingSpec>
struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
{
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b0,
const void* p_b1,
void* p_c,
void* p_z,
void* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_lengths, // b1_gs_os_ns_lengths
const std::vector<index_t>& b1_gs_gemm1ns_gemm1ks_strides, // b1_gs_os_ns_strides
const std::vector<index_t>& c_gs_ms_gemm1ns_lengths, // c_gs_ms_os_lengths
const std::vector<index_t>& c_gs_ms_gemm1ns_strides, // c_gs_ms_os_strides
const std::vector<index_t>& z_gs_ms_ns_lengths, // z_gs_ms_os_lengths
const std::vector<index_t>& z_gs_ms_ns_strides, // z_gs_ms_os_strides
const std::vector<index_t>& lse_gs_ms_lengths, // lse_gs_ms_lengths
const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<index_t>, NumAcc1Bias>
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -70,6 +70,75 @@ struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator ...@@ -70,6 +70,75 @@ struct DeviceGroupedGemmSoftmaxGemmPermute : public BaseOperator
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
}; };
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename ZDataType,
typename LSEDataType,
typename Acc0BiasDataType,
typename Acc1BiasDataType,
typename AElementwiseOperation,
typename B0ElementwiseOperation,
typename Acc0ElementwiseOperation,
typename B1ElementwiseOperation,
typename CElementwiseOperation,
MaskingSpecialization MaskingSpec>
struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
{
struct ProblemDesc
{
std::vector<index_t> a_gs_ms_ks_lengths;
std::vector<index_t> a_gs_ms_ks_strides;
std::vector<index_t> b0_gs_ns_ks_lengths;
std::vector<index_t> b0_gs_ns_ks_strides;
std::vector<index_t> b1_gs_os_ns_lengths;
std::vector<index_t> b1_gs_os_ns_strides;
std::vector<index_t> c_gs_ms_os_lengths;
std::vector<index_t> c_gs_ms_os_strides;
std::vector<index_t> z_gs_ms_ns_lengths;
std::vector<index_t> z_gs_ms_ns_strides;
std::vector<index_t> lse_gs_ms_lengths;
std::vector<index_t> lse_gs_ms_strides;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_lengths;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_strides;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_lengths;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_strides;
};
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*> p_a_vec,
std::vector<const void*> p_b0_vec,
std::vector<const void*> p_b1_vec,
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
B1ElementwiseOperation b1_element_op,
CElementwiseOperation c_element_op,
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
} // namespace ck } // namespace ck
...@@ -4,7 +4,6 @@ ...@@ -4,7 +4,6 @@
#pragma once #pragma once
#include <array> #include <array>
#include <cmath>
#include <memory> #include <memory>
#include <type_traits> #include <type_traits>
......
...@@ -579,6 +579,7 @@ struct DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle ...@@ -579,6 +579,7 @@ struct DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
BatchStrideD1s, BatchStrideD1s,
BatchStrideE1} BatchStrideE1}
{ {
#if DEBUG_LOG
std::cout << "a0_grid_desc_m_k_{" << a0_grid_desc_m_k_.GetLength(I0) << ", " std::cout << "a0_grid_desc_m_k_{" << a0_grid_desc_m_k_.GetLength(I0) << ", "
<< a0_grid_desc_m_k_.GetLength(I1) << "}" << std::endl; << a0_grid_desc_m_k_.GetLength(I1) << "}" << std::endl;
std::cout << "b0_grid_desc_n_k_{" << b0_grid_desc_n_k_.GetLength(I0) << ", " std::cout << "b0_grid_desc_n_k_{" << b0_grid_desc_n_k_.GetLength(I0) << ", "
...@@ -601,6 +602,7 @@ struct DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle ...@@ -601,6 +602,7 @@ struct DeviceBatchedGemmMultipleDGemmMultipleD_Xdl_CShuffle
<< std::endl; << std::endl;
std::cout << "e1_grid_desc_m_n_{" << e1_grid_desc_m_n_.GetLength(I0) << ", " std::cout << "e1_grid_desc_m_n_{" << e1_grid_desc_m_n_.GetLength(I0) << ", "
<< e1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << e1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
#endif
static_for<0, NumD0Tensor, 1>{}([&](auto i) { static_for<0, NumD0Tensor, 1>{}([&](auto i) {
using D0Layout = remove_cvref_t<tuple_element_t<i.value, D0sLayout>>; using D0Layout = remove_cvref_t<tuple_element_t<i.value, D0sLayout>>;
......
...@@ -657,7 +657,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceO ...@@ -657,7 +657,7 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceO
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{}) float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{ {
#if 0 #if DEBUG_LOG
{ {
std::cout << "arg.Batch_ = " << arg.Batch_ << std::endl; std::cout << "arg.Batch_ = " << arg.Batch_ << std::endl;
...@@ -674,8 +674,8 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceO ...@@ -674,8 +674,8 @@ struct DeviceBatchedGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceO
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", " std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.reduce_grid_desc_m_{ " << arg.reduce_grid_desc_m_.GetLength(I0) << "}" std::cout << "arg.reduce_grid_desc_m_{ " << arg.reduce_grid_desc_m_.GetLength(I0)
<< std::endl; << "}" << std::endl;
} }
#endif #endif
......
...@@ -485,19 +485,15 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -485,19 +485,15 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
std::cout << "a_grid_desc_g_m_k_: " << a_grid_desc_g_m_k_.GetLength(I0) << ", " std::cout << "a_grid_desc_g_m_k_: " << a_grid_desc_g_m_k_.GetLength(I0) << ", "
<< a_grid_desc_g_m_k_.GetLength(I1) << ", " << a_grid_desc_g_m_k_.GetLength(I1) << ", "
<< a_grid_desc_g_m_k_.GetLength(I2) << '\n'; << a_grid_desc_g_m_k_.GetLength(I2) << '\n';
// a_grid_desc_g_m_k_.Print();
std::cout << "b_grid_desc_g_n_k_: " << b_grid_desc_g_n_k_.GetLength(I0) << ", " std::cout << "b_grid_desc_g_n_k_: " << b_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b_grid_desc_g_n_k_.GetLength(I1) << ", " << b_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b_grid_desc_g_n_k_.GetLength(I2) << '\n'; << b_grid_desc_g_n_k_.GetLength(I2) << '\n';
// b_grid_desc_g_n_k_.Print();
std::cout << "b1_grid_desc_g_n_k_: " << b1_grid_desc_g_n_k_.GetLength(I0) << ", " std::cout << "b1_grid_desc_g_n_k_: " << b1_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I1) << ", " << b1_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I2) << '\n'; << b1_grid_desc_g_n_k_.GetLength(I2) << '\n';
// b1_grid_desc_g_n_k_.Print();
std::cout << "c_grid_desc_g_m_n_: " << c_grid_desc_g_m_n_.GetLength(I0) << ", " std::cout << "c_grid_desc_g_m_n_: " << c_grid_desc_g_m_n_.GetLength(I0) << ", "
<< c_grid_desc_g_m_n_.GetLength(I1) << ", " << c_grid_desc_g_m_n_.GetLength(I1) << ", "
<< c_grid_desc_g_m_n_.GetLength(I2) << '\n'; << c_grid_desc_g_m_n_.GetLength(I2) << '\n';
// c_grid_desc_g_m_n_.Print();
} }
// pointers // pointers
...@@ -636,7 +632,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle ...@@ -636,7 +632,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
static bool IsSupportedArgument(const Argument& arg) static bool IsSupportedArgument(const Argument& arg)
{ {
#if 0 #if DEBUG_LOG
arg.Print(); arg.Print();
#endif #endif
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment