Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1dbdab56
Commit
1dbdab56
authored
Aug 18, 2022
by
Jing Zhang
Browse files
merge develop
parents
d2e49b23
bac7df8f
Changes
192
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1056 additions
and
139 deletions
+1056
-139
library/src/tensor_operation_instance/gpu/gemm_add_add_fastgelu/CMakeLists.txt
...eration_instance/gpu/gemm_add_add_fastgelu/CMakeLists.txt
+5
-13
library/src/tensor_operation_instance/gpu/gemm_bias_add_reduce/CMakeLists.txt
...peration_instance/gpu/gemm_bias_add_reduce/CMakeLists.txt
+1
-8
library/src/tensor_operation_instance/gpu/gemm_bilinear/CMakeLists.txt
...ensor_operation_instance/gpu/gemm_bilinear/CMakeLists.txt
+5
-11
library/src/tensor_operation_instance/gpu/gemm_reduce/CMakeLists.txt
.../tensor_operation_instance/gpu/gemm_reduce/CMakeLists.txt
+1
-5
library/src/tensor_operation_instance/gpu/gemm_splitk/CMakeLists.txt
.../tensor_operation_instance/gpu/gemm_splitk/CMakeLists.txt
+9
-14
library/src/tensor_operation_instance/gpu/grouped_conv1d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv1d_fwd/CMakeLists.txt
+5
-11
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
+6
-12
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
..._operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
+5
-11
library/src/tensor_operation_instance/gpu/grouped_gemm/CMakeLists.txt
...tensor_operation_instance/gpu/grouped_gemm/CMakeLists.txt
+5
-14
library/src/tensor_operation_instance/gpu/normalization/CMakeLists.txt
...ensor_operation_instance/gpu/normalization/CMakeLists.txt
+3
-7
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
...tance/gpu/normalization/device_layernorm_f16_instance.cpp
+53
-0
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f32_instance.cpp
...tance/gpu/normalization/device_layernorm_f32_instance.cpp
+51
-0
library/src/tensor_operation_instance/gpu/reduce/CMakeLists.txt
...y/src/tensor_operation_instance/gpu/reduce/CMakeLists.txt
+22
-28
library/src/utility/device_memory.cpp
library/src/utility/device_memory.cpp
+5
-5
profiler/CMakeLists.txt
profiler/CMakeLists.txt
+1
-0
profiler/include/profile_batched_gemm_gemm_impl.hpp
profiler/include/profile_batched_gemm_gemm_impl.hpp
+313
-0
profiler/include/profile_batched_gemm_impl.hpp
profiler/include/profile_batched_gemm_impl.hpp
+1
-0
profiler/include/profile_batched_gemm_reduce_impl.hpp
profiler/include/profile_batched_gemm_reduce_impl.hpp
+1
-0
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
+325
-0
profiler/include/profile_layernorm_impl.hpp
profiler/include/profile_layernorm_impl.hpp
+239
-0
No files found.
library/src/tensor_operation_instance/gpu/gemm_add_add_fastgelu/CMakeLists.txt
View file @
1dbdab56
# device_gemm_add_add_fastgelu_instance
set
(
DEVICE_GEMM_ADD_ADD_FASTGELU_INSTANCE_SOURCE
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instance.cpp;
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instance.cpp;
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instance.cpp;
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instance.cpp;
add_instance_library
(
device_gemm_add_add_fastgelu_instance
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_kn_mn_mn_mn_instance.cpp
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_km_nk_mn_mn_mn_instance.cpp
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_kn_mn_mn_mn_instance.cpp
device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_f16_mk_nk_mn_mn_mn_instance.cpp
)
add_library
(
device_gemm_add_add_fastgelu_instance OBJECT
${
DEVICE_GEMM_ADD_ADD_FASTGELU_INSTANCE_SOURCE
}
)
target_compile_features
(
device_gemm_add_add_fastgelu_instance PUBLIC
)
set_target_properties
(
device_gemm_add_add_fastgelu_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_gemm_add_add_fastgelu_instance
)
library/src/tensor_operation_instance/gpu/gemm_bias_add_reduce/CMakeLists.txt
View file @
1dbdab56
set
(
DEVICE_GEMM_BIAS_ADD_REDUCE_INSTANCE_SOURCE
add_instance_library
(
device_gemm_bias_add_reduce_instance
device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instance.cpp
device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instance.cpp
device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instance.cpp
device_gemm_bias_add_mean_squaremean_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instance.cpp
)
add_library
(
device_gemm_bias_add_reduce_instance OBJECT
${
DEVICE_GEMM_BIAS_ADD_REDUCE_INSTANCE_SOURCE
}
)
target_compile_features
(
device_gemm_bias_add_reduce_instance PUBLIC
)
set_target_properties
(
device_gemm_bias_add_reduce_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_gemm_bias_add_reduce_instance
)
library/src/tensor_operation_instance/gpu/gemm_bilinear/CMakeLists.txt
View file @
1dbdab56
# device_gemm_bilinear_instance
set
(
DEVICE_GEMM_BILINEAR_INSTANCE_SOURCE
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp;
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp;
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp;
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp;
add_instance_library
(
device_gemm_bilinear_instance
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp
)
add_library
(
device_gemm_bilinear_instance OBJECT
${
DEVICE_GEMM_BILINEAR_INSTANCE_SOURCE
}
)
set_target_properties
(
device_gemm_bilinear_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_gemm_bilinear_instance
)
library/src/tensor_operation_instance/gpu/gemm_reduce/CMakeLists.txt
View file @
1dbdab56
set
(
DEVICE_GEMM_REDUCE_INSTANCE_SOURCE
add_instance_library
(
device_gemm_reduce_instance
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instance.cpp
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instance.cpp
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instance.cpp
device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instance.cpp
)
add_instance_library
(
device_gemm_reduce_instance
${
DEVICE_GEMM_REDUCE_INSTANCE_SOURCE
}
)
rocm_install
(
TARGETS device_gemm_reduce_instance
)
clang_tidy_check
(
device_gemm_reduce_instance
)
library/src/tensor_operation_instance/gpu/gemm_splitk/CMakeLists.txt
View file @
1dbdab56
set
(
DEVICE_GEMM_SPLITK_INSTANCE_SOURCE
device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instance.cpp
;
device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp
;
device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp
;
device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp
;
device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
;
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp
;
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp
;
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp
;
add_instance_library
(
device_gemm_splitk_instance
device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instance.cpp
)
add_library
(
device_gemm_splitk_instance OBJECT
${
DEVICE_GEMM_SPLITK_INSTANCE_SOURCE
}
)
target_compile_features
(
device_gemm_splitk_instance PUBLIC
)
set_target_properties
(
device_gemm_splitk_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
library/src/tensor_operation_instance/gpu/grouped_conv1d_fwd/CMakeLists.txt
View file @
1dbdab56
# device_grouped_conv1d_fwd_instance
set
(
DEVICE_GROUPED_CONV1D_FWD_INSTANCE_SOURCE
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instance.cpp;
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instance.cpp;
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instance.cpp;
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instance.cpp;
add_instance_library
(
device_grouped_conv1d_fwd_instance
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instance.cpp
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instance.cpp
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instance.cpp
device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instance.cpp
)
add_library
(
device_grouped_conv1d_fwd_instance OBJECT
${
DEVICE_GROUPED_CONV1D_FWD_INSTANCE_SOURCE
}
)
set_target_properties
(
device_grouped_conv1d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_grouped_conv1d_fwd_instance
)
library/src/tensor_operation_instance/gpu/grouped_conv2d_fwd/CMakeLists.txt
View file @
1dbdab56
# device_grouped_conv2d_fwd_instance
set
(
DEVICE_GROUPED_CONV2D_FWD_INSTANCE_SOURCE
add_instance_library
(
device_grouped_conv2d_fwd_instance
# GNHWC, GKYXC, GNHWK
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
;
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
;
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
;
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
;
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instance.cpp
# NHWGC, GKYXC, NHWGK
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
;
device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
)
add_library
(
device_grouped_conv2d_fwd_instance OBJECT
${
DEVICE_GROUPED_CONV2D_FWD_INSTANCE_SOURCE
}
)
set_target_properties
(
device_grouped_conv2d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_grouped_conv2d_fwd_instance
)
library/src/tensor_operation_instance/gpu/grouped_conv3d_fwd/CMakeLists.txt
View file @
1dbdab56
# device_grouped_conv3d_fwd_instance
set
(
DEVICE_GROUPED_CONV3D_FWD_INSTANCE_SOURCE
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp;
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp;
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp;
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp;
add_library
(
device_grouped_conv3d_fwd_instance
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp
)
add_library
(
device_grouped_conv3d_fwd_instance OBJECT
${
DEVICE_GROUPED_CONV3D_FWD_INSTANCE_SOURCE
}
)
set_target_properties
(
device_grouped_conv3d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_grouped_conv3d_fwd_instance
)
library/src/tensor_operation_instance/gpu/grouped_gemm/CMakeLists.txt
View file @
1dbdab56
# device_grouped_gemm_instance
set
(
DEVICE_GROUPED_GEMM_INSTANCE_SOURCE
device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instance.cpp;
device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp;
device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp;
device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp;
add_instance_library
(
device_grouped_gemm_instance
device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp
device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp
)
add_library
(
device_grouped_gemm_instance OBJECT
${
DEVICE_GROUPED_GEMM_INSTANCE_SOURCE
}
)
target_compile_features
(
device_grouped_gemm_instance PUBLIC
)
set_target_properties
(
device_grouped_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
rocm_install
(
TARGETS device_grouped_gemm_instance
)
clang_tidy_check
(
device_grouped_gemm_instance
)
library/src/tensor_operation_instance/gpu/normalization/CMakeLists.txt
View file @
1dbdab56
# device_normalization_instance
set
(
DEVICE_NORMALIZATION_INSTANCE_SOURCE
add_instance_library
(
device_normalization_instance
device_layernorm_f16_instance.cpp
device_layernorm_f32_instance.cpp
device_softmax_f32_f32_instance.cpp
device_softmax_f16_f16_instance.cpp
)
add_library
(
device_normalization_instance OBJECT
${
DEVICE_NORMALIZATION_INSTANCE_SOURCE
}
)
set_target_properties
(
device_normalization_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_normalization_instance
)
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f16_instance.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
index_t
Rank
,
index_t
Reduce
>
using
device_layernorm_f16_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
// fallback kernel
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
8
,
8
,
8
,
8
>
,
DeviceLayernormImpl
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
8
,
8
,
8
,
8
>
// clang-format on
>
;
void
add_device_layernorm_f16_rank2_instances
(
std
::
vector
<
DeviceLayernormPtr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
2
,
1
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
2
,
1
>
{});
}
void
add_device_layernorm_f16_rank4_instances
(
std
::
vector
<
DeviceLayernormPtr
<
F16
,
F16
,
F16
,
F32
,
F16
,
Pass
,
4
,
3
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f16_instances
<
4
,
3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/normalization/device_layernorm_f32_instance.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F32
=
float
;
using
Pass
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
index_t
Rank
,
index_t
Reduce
>
using
device_layernorm_f32_instances
=
std
::
tuple
<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
1
,
1
,
1
,
1
>
,
// fallback kernel
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
2
,
2
,
2
,
2
>
,
// fallback kernel
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
8
,
32
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
4
,
64
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
2
,
128
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
8
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
16
,
1
,
4
,
4
,
4
,
4
>
,
DeviceLayernormImpl
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
Rank
,
Reduce
,
256
,
1
,
256
,
1
,
32
,
1
,
4
,
4
,
4
,
4
>
// clang-format on
>
;
void
add_device_layernorm_f32_rank2_instances
(
std
::
vector
<
DeviceLayernormPtr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
2
,
1
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
2
,
1
>
{});
}
void
add_device_layernorm_f32_rank4_instances
(
std
::
vector
<
DeviceLayernormPtr
<
F32
,
F32
,
F32
,
F32
,
F32
,
Pass
,
4
,
3
>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_layernorm_f32_instances
<
4
,
3
>
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/reduce/CMakeLists.txt
View file @
1dbdab56
# device_reduce_instance
set
(
DEVICE_REDUCE_INSTANCE_SOURCE
device_reduce_instance_blockwise_f16_f16_f16.cpp;
device_reduce_instance_blockwise_f16_f32_f16.cpp;
device_reduce_instance_blockwise_f32_f32_f32.cpp;
device_reduce_instance_blockwise_f32_f64_f32.cpp;
device_reduce_instance_blockwise_f64_f64_f64.cpp;
device_reduce_instance_blockwise_i8_i32_i8.cpp;
device_reduce_instance_blockwise_i8_i8_i8.cpp;
device_reduce_instance_blockwise_b16_f32_b16.cpp;
device_reduce_instance_threadwise_f16_f16_f16.cpp;
device_reduce_instance_threadwise_f16_f32_f16.cpp;
device_reduce_instance_threadwise_f32_f32_f32.cpp;
device_reduce_instance_threadwise_f32_f64_f32.cpp;
device_reduce_instance_threadwise_f64_f64_f64.cpp;
device_reduce_instance_threadwise_i8_i32_i8.cpp;
device_reduce_instance_threadwise_i8_i8_i8.cpp;
device_reduce_instance_threadwise_b16_f32_b16.cpp;
device_reduce_instance_multiblock_atomic_add_f16_f32_f32.cpp;
device_reduce_instance_multiblock_atomic_add_f32_f32_f32.cpp;
device_reduce_instance_multiblock_atomic_add_f32_f64_f32.cpp;
device_reduce_instance_multiblock_atomic_add_f64_f64_f64.cpp;
device_reduce_instance_multiblock_atomic_add_b16_f32_f32.cpp;
add_instance_library
(
device_reduce_instance
device_reduce_instance_blockwise_f16_f16_f16.cpp
device_reduce_instance_blockwise_f16_f32_f16.cpp
device_reduce_instance_blockwise_f32_f32_f32.cpp
device_reduce_instance_blockwise_f32_f64_f32.cpp
device_reduce_instance_blockwise_f64_f64_f64.cpp
device_reduce_instance_blockwise_i8_i32_i8.cpp
device_reduce_instance_blockwise_i8_i8_i8.cpp
device_reduce_instance_blockwise_b16_f32_b16.cpp
device_reduce_instance_threadwise_f16_f16_f16.cpp
device_reduce_instance_threadwise_f16_f32_f16.cpp
device_reduce_instance_threadwise_f32_f32_f32.cpp
device_reduce_instance_threadwise_f32_f64_f32.cpp
device_reduce_instance_threadwise_f64_f64_f64.cpp
device_reduce_instance_threadwise_i8_i32_i8.cpp
device_reduce_instance_threadwise_i8_i8_i8.cpp
device_reduce_instance_threadwise_b16_f32_b16.cpp
device_reduce_instance_multiblock_atomic_add_f16_f32_f32.cpp
device_reduce_instance_multiblock_atomic_add_f32_f32_f32.cpp
device_reduce_instance_multiblock_atomic_add_f32_f64_f32.cpp
device_reduce_instance_multiblock_atomic_add_f64_f64_f64.cpp
device_reduce_instance_multiblock_atomic_add_b16_f32_f32.cpp
)
add_library
(
device_reduce_instance OBJECT
${
DEVICE_REDUCE_INSTANCE_SOURCE
}
)
set_target_properties
(
device_reduce_instance PROPERTIES POSITION_INDEPENDENT_CODE ON
)
clang_tidy_check
(
device_reduce_instance
)
library/src/utility/device_memory.cpp
View file @
1dbdab56
...
...
@@ -10,20 +10,20 @@ DeviceMem::DeviceMem(std::size_t mem_size) : mMemSize(mem_size)
hip_check_error
(
hipMalloc
(
static_cast
<
void
**>
(
&
mpDeviceBuf
),
mMemSize
));
}
void
*
DeviceMem
::
GetDeviceBuffer
()
{
return
mpDeviceBuf
;
}
void
*
DeviceMem
::
GetDeviceBuffer
()
const
{
return
mpDeviceBuf
;
}
std
::
size_t
DeviceMem
::
GetBufferSize
()
{
return
mMemSize
;
}
std
::
size_t
DeviceMem
::
GetBufferSize
()
const
{
return
mMemSize
;
}
void
DeviceMem
::
ToDevice
(
const
void
*
p
)
void
DeviceMem
::
ToDevice
(
const
void
*
p
)
const
{
hip_check_error
(
hipMemcpy
(
mpDeviceBuf
,
const_cast
<
void
*>
(
p
),
mMemSize
,
hipMemcpyHostToDevice
));
}
void
DeviceMem
::
FromDevice
(
void
*
p
)
void
DeviceMem
::
FromDevice
(
void
*
p
)
const
{
hip_check_error
(
hipMemcpy
(
p
,
mpDeviceBuf
,
mMemSize
,
hipMemcpyDeviceToHost
));
}
void
DeviceMem
::
SetZero
()
{
hip_check_error
(
hipMemset
(
mpDeviceBuf
,
0
,
mMemSize
));
}
void
DeviceMem
::
SetZero
()
const
{
hip_check_error
(
hipMemset
(
mpDeviceBuf
,
0
,
mMemSize
));
}
DeviceMem
::~
DeviceMem
()
{
hip_check_error
(
hipFree
(
mpDeviceBuf
));
}
profiler/CMakeLists.txt
View file @
1dbdab56
...
...
@@ -21,6 +21,7 @@ set(PROFILER_SOURCE
src/profile_conv_bwd_weight.cpp
src/profile_grouped_conv_fwd.cpp
src/profile_reduce.cpp
src/profile_layernorm.cpp
src/profile_normalization.cpp
)
...
...
profiler/include/profile_batched_gemm_gemm_impl.hpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
>
bool
profile_batched_gemm_gemm_impl
(
bool
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
O
,
int
BatchCount
=
1
,
int
StrideA
=
-
1
,
int
StrideB0
=
-
1
,
int
StrideB1
=
-
1
,
int
StrideC
=
-
1
,
int
BatchStrideA
=
-
1
,
int
BatchStrideB0
=
-
1
,
int
BatchStrideB1
=
-
1
,
int
BatchStrideC
=
-
1
)
{
using
Row
=
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
AccDataType
=
float
;
// Ref Gemm0
using
ReferenceGemm0Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
ADataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
// Ref Gemm
using
ReferenceGemm1Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
bool
pass
=
true
;
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
// Host verification: Output of Gemm0 is input A of Gemm1
Tensor
<
ADataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
3
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
3
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
3
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
using
DeviceOp
=
tensor_operation
::
device
::
DeviceBatchedGemmGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
acc0_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a_g_m_k: "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b0_g_k_n : "
,
b0_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b1_g_n_o : "
,
b1_g_n_o
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_g_m_o_host_result : "
,
c_g_m_o_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_g_m_o_device_result : "
,
c_g_m_o_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_batched_gemm_impl.hpp
View file @
1dbdab56
...
...
@@ -101,6 +101,7 @@ bool profile_batched_gemm_impl(int do_verification,
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
...
...
profiler/include/profile_batched_gemm_reduce_impl.hpp
View file @
1dbdab56
...
...
@@ -155,6 +155,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
float
,
AElementOp
,
BElementOp
,
CElementOp
>
;
...
...
profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
namespace
ck
{
namespace
profiler
{
template
<
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
typename
CDataType
,
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
CLayout
>
bool
profile_batched_gemm_softmax_gemm_impl
(
bool
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
int
M
,
int
N
,
int
K
,
int
O
,
int
BatchCount
=
1
,
int
StrideA
=
-
1
,
int
StrideB0
=
-
1
,
int
StrideB1
=
-
1
,
int
StrideC
=
-
1
,
int
BatchStrideA
=
-
1
,
int
BatchStrideB0
=
-
1
,
int
BatchStrideB1
=
-
1
,
int
BatchStrideC
=
-
1
)
{
using
Row
=
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
using
AccDataType
=
float
;
// Ref Gemm0: various type in, fp32 out
using
ReferenceGemm0Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
// Ref Softmax: fp32 in, various type out
using
ReferenceSoftmaxInstance
=
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: various type in, various type out
using
ReferenceGemm1Instance
=
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
bool
pass
=
true
;
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
O
:
M
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
StrideC
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
const
int
DefaultBatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Col
>
?
O
:
M
)
*
StrideC
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
BatchStrideC
=
BatchStrideC
<
0
?
DefaultBatchStrideC
:
BatchStrideC
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_o_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
O
,
StrideC
,
BatchStrideC
,
CLayout
{}));
// Host verification: Output of Gemm0 is input A of Gemm1
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_o: "
<<
c_g_m_o_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSize
());
DeviceMem
c_g_m_o_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_o_device_result
.
mDesc
.
GetElementSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
using
DeviceOp
=
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
}
std
::
string
best_op_name
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
for
(
auto
&
op_ptr
:
op_ptrs
)
{
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_g_m_o_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
StrideA
,
StrideB0
,
StrideB1
,
StrideC
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
BatchStrideC
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
pass
=
pass
&
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"a_g_m_k: "
,
a_g_m_k
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b0_g_k_n : "
,
b0_g_k_n
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"b1_g_n_o : "
,
b1_g_n_o
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_g_m_o_host_result : "
,
c_g_m_o_host_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"c_g_m_o_device_result : "
,
c_g_m_o_device_result
.
mData
,
","
)
<<
std
::
endl
;
}
}
}
else
{
std
::
cout
<<
op_ptr
->
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
pass
;
}
}
// namespace profiler
}
// namespace ck
profiler/include/profile_layernorm_impl.hpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "profiler/include/data_type_enum.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_layernorm_f16_rank2_instances
(
std
::
vector
<
DeviceLayernormPtr
<
F16
,
F16
,
F16
,
F32
,
F16
,
PassThrough
,
2
,
1
>>&
);
void
add_device_layernorm_f32_rank2_instances
(
std
::
vector
<
DeviceLayernormPtr
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
2
,
1
>>&
);
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
profiler
{
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
AccDataType
,
typename
YDataType
,
index_t
Rank
>
void
profile_layernorm_impl
(
int
do_verification
,
int
init_method
,
bool
do_log
,
bool
time_kernel
,
std
::
vector
<
index_t
>
length
,
std
::
vector
<
index_t
>
strideXY
,
std
::
vector
<
index_t
>
strideGamma
,
std
::
vector
<
index_t
>
strideBeta
)
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
if
(
length
.
size
()
<
2
)
return
;
// Assume normalize dimension except for first dimension
std
::
vector
<
index_t
>
reduce_length
{
length
.
begin
()
+
1
,
length
.
end
()};
std
::
vector
<
index_t
>
reduce_dim
;
for
(
int
i
=
1
;
i
<
Rank
;
++
i
)
reduce_dim
.
push_back
(
i
);
Tensor
<
XDataType
>
x
(
length
);
Tensor
<
GammaDataType
>
gamma
(
reduce_length
,
strideGamma
);
Tensor
<
BetaDataType
>
beta
(
reduce_length
,
strideBeta
);
Tensor
<
YDataType
>
y
(
length
,
strideXY
);
Tensor
<
YDataType
>
host_y
(
length
,
strideXY
);
switch
(
init_method
)
{
// case 0: break;
case
0
:
x
.
GenerateTensorValue
(
GeneratorTensor_1
<
XDataType
>
{});
gamma
.
GenerateTensorValue
(
GeneratorTensor_1
<
GammaDataType
>
{});
beta
.
GenerateTensorValue
(
GeneratorTensor_1
<
BetaDataType
>
{});
y
.
GenerateTensorValue
(
GeneratorTensor_1
<
YDataType
>
{});
break
;
case
1
:
x
.
GenerateTensorValue
(
GeneratorTensor_2
<
XDataType
>
{
-
5
,
5
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
GammaDataType
>
{
-
5
,
5
});
beta
.
GenerateTensorValue
(
GeneratorTensor_2
<
BetaDataType
>
{
-
5
,
5
});
y
.
GenerateTensorValue
(
GeneratorTensor_2
<
YDataType
>
{
-
5
,
5
});
break
;
default:
x
.
GenerateTensorValue
(
GeneratorTensor_3
<
XDataType
>
{
0
,
1
});
gamma
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
0.5
,
0.5
});
beta
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
0.5
,
0.5
});
y
.
GenerateTensorValue
(
GeneratorTensor_3
<
YDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
beta_dev
.
ToDevice
(
beta
.
mData
.
data
());
// add device normalization instances
constexpr
int
NumReduceDim
=
Rank
-
1
;
std
::
vector
<
tensor_operation
::
device
::
DeviceLayernormPtr
<
XDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
PassThrough
,
Rank
,
NumReduceDim
>>
instances
;
if
constexpr
(
is_same
<
XDataType
,
F16
>::
value
&&
is_same
<
GammaDataType
,
F16
>::
value
&&
is_same
<
BetaDataType
,
F16
>::
value
&&
is_same
<
YDataType
,
F16
>::
value
&&
is_same
<
AccDataType
,
F32
>::
value
)
{
if
(
length
.
size
()
==
2
)
tensor_operation
::
device
::
instance
::
add_device_layernorm_f16_rank2_instances
(
instances
);
}
else
if
constexpr
(
is_same
<
XDataType
,
F32
>::
value
&&
is_same
<
GammaDataType
,
F32
>::
value
&&
is_same
<
BetaDataType
,
F32
>::
value
&&
is_same
<
YDataType
,
F32
>::
value
&&
is_same
<
AccDataType
,
F32
>::
value
)
{
if
(
length
.
size
()
==
2
)
tensor_operation
::
device
::
instance
::
add_device_layernorm_f32_rank2_instances
(
instances
);
}
if
(
instances
.
size
()
<=
0
)
{
throw
std
::
runtime_error
(
"wrong! no device normalization instance found"
);
}
std
::
string
best_instance_name
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
if
(
do_verification
)
{
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
PassThrough
,
Rank
,
NumReduceDim
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
PassThrough
{},
length
,
reduce_dim
,
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
}
for
(
auto
&
inst_ptr
:
instances
)
{
auto
argument_ptr
=
inst_ptr
->
MakeArgumentPointer
(
length
,
strideXY
,
strideGamma
,
strideBeta
,
strideXY
,
reduce_dim
,
1e-4
,
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
PassThrough
{});
if
(
!
inst_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" skipped due to unsupported argument: "
;
LogRange
(
std
::
cout
<<
"input lengths = ["
,
length
,
"], "
)
<<
std
::
endl
;
return
;
}
auto
invoker_ptr
=
inst_ptr
->
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
x
.
mDesc
.
GetElementSize
()
*
sizeof
(
XDataType
)
+
gamma
.
mDesc
.
GetElementSize
()
*
sizeof
(
GammaDataType
)
+
beta
.
mDesc
.
GetElementSize
()
*
sizeof
(
BetaDataType
)
+
y
.
mDesc
.
GetElementSize
()
*
sizeof
(
YDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
inst_ptr
->
GetTypeString
()
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_instance_name
=
inst_ptr
->
GetTypeString
();
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
do_verification
)
{
y_dev
.
FromDevice
(
y
.
mData
.
data
());
bool
pass
=
ck
::
utils
::
check_err
(
y
.
mData
,
host_y
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-3
);
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"x : "
,
x
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"host_y : "
,
host_y
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"y : "
,
y
.
mData
,
","
)
<<
std
::
endl
;
}
if
(
!
pass
)
{
std
::
cout
<<
inst_ptr
->
GetTypeString
()
<<
" failed verification: "
;
LogRange
(
std
::
cout
<<
"lengths = ["
,
length
,
", "
)
<<
"]."
<<
std
::
endl
;
return
;
}
else
{
std
::
cout
<<
"pass"
<<
std
::
endl
;
}
}
}
LogRange
(
std
::
cout
<<
"length = "
,
length
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"stride = "
,
strideXY
,
","
)
<<
", "
;
LogRange
(
std
::
cout
<<
"reduce dims "
,
reduce_dim
,
","
)
<<
std
::
endl
;
std
::
cout
<<
"best perf = "
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_instance_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
Prev
1
…
5
6
7
8
9
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment