Commit 1dbdab56 authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents d2e49b23 bac7df8f
add_example_executable(example_batchnorm_forward batchnorm_forward_nhwc.cpp)
add_example_executable(example_batchnorm_infer batchnorm_infer_nhwc.cpp)
# Instructions for ```batchnorm nhwc``` Example
## Run ```batchnorm forward nhwc```
```bash
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)
#arg2: 1/0 to indicate whether to update the moving average and variance (0=no, 1=yes)
#arg3: 1/0 to indicate whether to save result mean/invVariance (0=no, 1=yes)
#arg4: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg5: time kernel (0=no, 1=yes)
./bin/example_batchnorm_forward -D 128,16,16,1024 -v 1 0 0 1 2 1
```
Result
```
./bin/example_batchnorm_forward -D 128,16,16,1024 -v 1 0 0 1 2 1
launch_and_time_kernel: grid_dim {64, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {120, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
launch_and_time_kernel: grid_dim {120, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 2.08231 ms, 354.519 GB/s
```
Result
```
./bin/example_batchnorm_forward -D 128,16,16,1024 -v 1 0 1 0 2 0
echo $?
0
```
## Run ```batchnorm infer nhwc```
```bash
# -D <xxx> : input 4-d tensor lengths
# -v <x> : verification (0=no, 1=yes)
#arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)
#arg2: initialization (0=no init, 1=single integer value, 2=scope integer value, 3=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_batchnorm_infer -D 128,16,16,1024 -v 1 0 2 1
```
Result
```
./bin/example_batchnorm_infer -D 128,16,16,1024 -v 1 0 2 1
launch_and_time_kernel: grid_dim {120, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 1.28235 ms, 523.329 GB/s
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cassert>
#include <vector>
#include <array>
#include <type_traits>
#include "ck/utility/data_type.hpp"
// binary operation used to calculate invVariance from mean and meansquare
struct InvVariance
{
InvVariance(double epsilon) : epsilon_(epsilon){};
template <typename T>
__host__ __device__ constexpr void operator()(T& y, const T& mean, const T& meansquare) const
{
static_assert(std::is_same<T, float>::value || std::is_same<T, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
using ck::math::sqrt;
T tmp_epsilon = type_convert<T>(epsilon_);
y = meansquare - mean * mean;
y = 1.0f / sqrt(tmp_epsilon + y);
};
double epsilon_;
};
// (4-in, 2-out) element-wise operation used to update the moving average of mean and variance
struct MovingAverage
{
MovingAverage(double factor) : factor_(factor){};
template <typename T>
__host__ __device__ constexpr void operator()(T& y0,
T& y1,
const T& mean,
const T& runningMean,
const T& meansquare,
const T& runningVariance) const
{
static_assert(std::is_same<T, float>::value || std::is_same<T, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
T tmp_factor = type_convert<T>(factor_);
T variance = meansquare - mean * mean;
y0 = runningMean * (type_convert<T>(1.0f) - tmp_factor) + mean * tmp_factor;
y1 = runningVariance * (type_convert<T>(1.0f) - tmp_factor) + variance * tmp_factor;
};
double factor_;
};
struct MovingAverageAndInvVariance
{
MovingAverageAndInvVariance(double epsilon, double factor)
: epsilon_(epsilon), factor_(factor){};
template <typename T>
__host__ __device__ constexpr void operator()(T& y0, // resultRunningMean
T& y1, // resultRunningVariance
T& y2, // saveInvVariance
const T& mean,
const T& runningMean,
const T& meansquare,
const T& runningVariance) const
{
static_assert(std::is_same<T, float>::value || std::is_same<T, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
using ck::math::sqrt;
T tmp_epsilon = type_convert<T>(epsilon_);
T tmp_factor = type_convert<T>(factor_);
T variance = meansquare - mean * mean;
y0 = runningMean * (type_convert<T>(1.0f) - tmp_factor) + mean * tmp_factor;
y1 = runningVariance * (type_convert<T>(1.0f) - tmp_factor) + variance * tmp_factor;
y2 = 1.0f / sqrt(tmp_epsilon + variance);
};
double epsilon_;
double factor_;
};
struct NormalizeInInfer
{
NormalizeInInfer(double epsilon = 1e-4) : epsilon_(epsilon) {}
template <typename T1, typename T2>
__host__ __device__ constexpr void operator()(T1& y,
const T1& x,
const T2& mean,
const T2& variance,
const T2& gamma,
const T2& beta) const
{
static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
using ck::math::sqrt;
T2 tmp_x, tmp_y;
tmp_x = type_convert<T2>(x);
tmp_y = ((tmp_x - mean) / sqrt(variance + type_convert<T2>(epsilon_))) * gamma + beta;
y = type_convert<T1>(tmp_y);
};
double epsilon_;
};
struct NormalizeInForward
{
NormalizeInForward(double epsilon = 1e-4) : epsilon_(epsilon) {}
template <typename T1, typename T2>
__host__ __device__ constexpr void operator()(T1& y,
const T1& x,
const T2& mean,
const T2& meansquare,
const T2& gamma,
const T2& beta) const
{
static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value,
"Data type is not supported by this operation!");
using ck::type_convert;
using ck::math::sqrt;
T2 tmp_x, tmp_y;
T2 variance = meansquare - mean * mean;
tmp_x = type_convert<T2>(x);
tmp_y = ((tmp_x - mean) / sqrt(variance + type_convert<T2>(epsilon_))) * gamma + beta;
y = type_convert<T1>(tmp_y);
};
double epsilon_;
};
template <int Rank, int NumReduceDim>
static inline std::array<int, Rank - NumReduceDim>
get_invariant_dims(const std::array<int, NumReduceDim>& reduceDims)
{
int reduceFlag = 0;
// flag the bits for the reduceDims
for(int i = 0; i < NumReduceDim; i++)
{
reduceFlag |= 1 << reduceDims[i];
};
std::array<int, Rank - NumReduceDim> invariantDims;
// collect invariant dimensions
int dim = 0;
for(int i = 0; i < Rank; i++)
if((reduceFlag & (1 << i)) == 0)
{
invariantDims[dim] = i;
dim++;
};
return invariantDims;
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cassert>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_multiple_reduce_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "batchnorm_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::index_t Rank,
ck::index_t NumBatchNormReduceDim,
bool fastest_dim_is_reduced = false>
int bnorm_fwd(bool time_kernel,
bool updateMovingAverage,
bool saveMeanAndInvVariance,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, Rank> xyLengths,
const std::array<ck::index_t, Rank> xStrides,
const std::array<ck::index_t, Rank> yStrides,
const std::array<ck::index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarStrides,
const void* p_x,
const void* p_scale,
const void* p_bias,
void* p_y,
double exponentialAverageFactor,
void* p_runningMean,
void* p_runningVariance,
double epsilon,
void* p_saveMean,
void* p_saveInvVariance,
void* p_tmp_mean,
void* p_tmp_meansquare)
{
static_assert(NumBatchNormReduceDim < Rank,
"Invalid number of reduced dimensions for batchnorm!");
constexpr ck::index_t NumScaleBiasMeanVarDim = Rank - NumBatchNormReduceDim;
using InElementwiseOperation_Mean = ck::tensor_operation::element_wise::PassThrough;
using AccElementwiseOperation_Mean = ck::tensor_operation::element_wise::UnaryDivide;
using InElementwiseOperation_Meansquare = ck::tensor_operation::element_wise::UnarySquare;
using AccElementwiseOperation_Meansquare = ck::tensor_operation::element_wise::UnaryDivide;
using DeviceMeanAndMeansquareInstance =
ck::tensor_operation::device::DeviceMultipleReduceMultiBlock<
2,
InOutDataType,
AccDataType,
ck::Tuple<AccDataType, AccDataType>,
Rank,
NumBatchNormReduceDim,
ck::reduce::Add,
ck::Tuple<InElementwiseOperation_Mean, InElementwiseOperation_Meansquare>,
ck::Tuple<AccElementwiseOperation_Mean, AccElementwiseOperation_Meansquare>,
ck::InMemoryDataOperationEnum::Set,
false, // PropagateNan
256,
16,
16,
1,
1,
fastest_dim_is_reduced ? 1 : 0,
1,
ck::Sequence<1, 1>>;
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<InOutDataType, AccDataType, AccDataType, AccDataType, AccDataType>, // x, mean,
// meansquare,
// scale, bias
ck::Tuple<InOutDataType>, // y
NormalizeInForward,
Rank,
2, // MPerthread
ck::Sequence<1, 1, 1, 1, 1>, // scalarPerVector: x, mean, meansquare, scale, bias
ck::Sequence<1>>; // scalarPerVector: y
using DeviceInvVarianceInstance = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<AccDataType, AccDataType>, // mean, meansquare
ck::Tuple<AccDataType>, // invVariance
InvVariance,
NumScaleBiasMeanVarDim,
2, // MPerthread
ck::Sequence<1, 1>, // scalarPerVector: mean, meansquare
ck::Sequence<1>>; // scalarPerVector: invVariance
using DeviceMovingAverageInstance = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<AccDataType, AccDataType, AccDataType, AccDataType>, // old moving mean, new mean,
// old moving variance, new
// meansquare
ck::Tuple<AccDataType, AccDataType>, // updated moving mean, updated moving variance
MovingAverage,
NumScaleBiasMeanVarDim,
4, // MPerthread
ck::Sequence<1, 1, 1, 1>, // scalarPerVector: old moving mean, new mean, old moving
// variance, new meansquare
ck::Sequence<1, 1>>; // scalarPerVector: updated moving mean, updated moving variance
using DeviceMovingAverageAndInvVarianceInstance =
ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<AccDataType, AccDataType, AccDataType, AccDataType>, // old moving mean, new
// mean, old moving
// variance, new
// meansquare
ck::Tuple<AccDataType, AccDataType, AccDataType>, // updated moving mean, updated moving
// variancem, invVariance
MovingAverageAndInvVariance,
NumScaleBiasMeanVarDim,
4, // MPerthread
ck::Sequence<1, 1, 1, 1>, // scalarPerVector: old moving mean, new mean, old moving
// variance, new meansquare
ck::Sequence<1, 1, 1>>; // scalarPerVector: updated moving mean, updated moving variance
auto invariantDims = get_invariant_dims<Rank, NumBatchNormReduceDim>(reduceDims);
std::array<ck::index_t, Rank> aligned_scaleBiasMeanVarStrides{0};
int i = 0;
for(auto dim : invariantDims)
{
assert(xyLengths[dim] == bnScaleBiasMeanVarLengths[i]);
aligned_scaleBiasMeanVarStrides[dim] = bnScaleBiasMeanVarStrides[i];
i++;
};
int32_t reduceLength = 1;
for(auto dim : reduceDims)
reduceLength *= xyLengths[dim];
int32_t invariantLength = 1;
for(auto dim : invariantDims)
invariantLength *= xyLengths[dim];
size_t total_length = static_cast<size_t>(invariantLength) * reduceLength;
float avg_time = 0.0f;
std::size_t num_bytes = 0;
auto dev_mean_and_meansquare = DeviceMeanAndMeansquareInstance{};
void* p_mean = saveMeanAndInvVariance ? p_saveMean : p_tmp_mean;
const AccDataType alpha = ck::type_convert<AccDataType>(1.0f);
const AccDataType beta = ck::type_convert<AccDataType>(0.0f);
auto argument_ptr1 = dev_mean_and_meansquare.MakeArgumentPointer(
xyLengths,
xStrides,
bnScaleBiasMeanVarLengths,
{bnScaleBiasMeanVarStrides, bnScaleBiasMeanVarStrides},
reduceDims,
{&alpha, &alpha},
{&beta, &beta},
p_x,
{p_mean, p_tmp_meansquare},
ck::make_tuple(InElementwiseOperation_Mean{}, InElementwiseOperation_Meansquare{}),
ck::make_tuple(AccElementwiseOperation_Mean{reduceLength},
AccElementwiseOperation_Meansquare{reduceLength}));
auto dev_normalize = DeviceNormalizeInstance{};
auto argument_ptr2 =
dev_normalize.MakeArgumentPointer(xyLengths,
{xStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{yStrides},
{p_x, p_mean, p_tmp_meansquare, p_scale, p_bias},
{p_y},
NormalizeInForward{epsilon});
if(!dev_mean_and_meansquare.IsSupportedArgument(argument_ptr1.get()) ||
!dev_normalize.IsSupportedArgument(argument_ptr2.get()))
{
std::cout << "The runtime parameters seems not supported by the Devic, exiting!"
<< std::endl;
return (-1);
};
auto invoker_ptr1 = dev_mean_and_meansquare.MakeInvokerPointer();
auto invoker_ptr2 = dev_normalize.MakeInvokerPointer();
avg_time += invoker_ptr1->Run(argument_ptr1.get(), StreamConfig{nullptr, time_kernel});
avg_time += invoker_ptr2->Run(argument_ptr2.get(), StreamConfig{nullptr, time_kernel});
num_bytes +=
(total_length * sizeof(InOutDataType) + invariantLength * 2 * sizeof(AccDataType)) + // No.1
(total_length * (1 * sizeof(InOutDataType) + 4 * sizeof(AccDataType)) +
total_length * sizeof(InOutDataType)); // No.2
if(saveMeanAndInvVariance && updateMovingAverage)
{
auto dev_moving_average_inv_variance = DeviceMovingAverageAndInvVarianceInstance{};
auto argument_ptr3 = dev_moving_average_inv_variance.MakeArgumentPointer(
bnScaleBiasMeanVarLengths,
{bnScaleBiasMeanVarStrides,
bnScaleBiasMeanVarStrides,
bnScaleBiasMeanVarStrides,
bnScaleBiasMeanVarStrides},
{bnScaleBiasMeanVarStrides, bnScaleBiasMeanVarStrides, bnScaleBiasMeanVarStrides},
{p_mean, p_runningMean, p_tmp_meansquare, p_runningVariance},
{p_runningMean, p_runningVariance, p_saveInvVariance},
MovingAverageAndInvVariance{epsilon, exponentialAverageFactor});
if(!dev_moving_average_inv_variance.IsSupportedArgument(argument_ptr3.get()))
{
std::cout << "Runtime parameters not supported by the Device, exiting!" << std::endl;
return (-1);
};
auto invoker_ptr3 = dev_moving_average_inv_variance.MakeInvokerPointer();
avg_time += invoker_ptr3->Run(argument_ptr3.get(), StreamConfig{nullptr, time_kernel});
num_bytes += invariantLength * (4 + 3) * sizeof(AccDataType) * 2; // No.5
}
else if(saveMeanAndInvVariance)
{
auto dev_inv_variance = DeviceInvVarianceInstance{};
auto argument_ptr3 = dev_inv_variance.MakeArgumentPointer(
bnScaleBiasMeanVarLengths,
{bnScaleBiasMeanVarStrides, bnScaleBiasMeanVarStrides},
{bnScaleBiasMeanVarStrides},
{p_mean, p_tmp_meansquare},
{p_saveInvVariance},
InvVariance{epsilon});
if(!dev_inv_variance.IsSupportedArgument(argument_ptr3.get()))
{
std::cout << "Runtime parameters not supported by the Device, exiting!" << std::endl;
return (-1);
};
auto invoker_ptr3 = dev_inv_variance.MakeInvokerPointer();
avg_time += invoker_ptr3->Run(argument_ptr3.get(), StreamConfig{nullptr, time_kernel});
num_bytes += invariantLength * (2 + 1) * sizeof(AccDataType);
}
else if(updateMovingAverage)
{
auto dev_moving_average = DeviceMovingAverageInstance{};
auto argument_ptr3 = dev_moving_average.MakeArgumentPointer(
bnScaleBiasMeanVarLengths,
{bnScaleBiasMeanVarStrides,
bnScaleBiasMeanVarStrides,
bnScaleBiasMeanVarStrides,
bnScaleBiasMeanVarStrides},
{bnScaleBiasMeanVarStrides, bnScaleBiasMeanVarStrides},
{p_mean, p_runningMean, p_tmp_meansquare, p_runningVariance},
{p_runningMean, p_runningVariance},
MovingAverage{exponentialAverageFactor});
if(!dev_moving_average.IsSupportedArgument(argument_ptr3.get()))
{
std::cout << "Runtime parameters not supported by the Device, exiting!" << std::endl;
return (-1);
};
auto invoker_ptr3 = dev_moving_average.MakeInvokerPointer();
avg_time += invoker_ptr3->Run(argument_ptr3.get(), StreamConfig{nullptr, time_kernel});
num_bytes += invariantLength * (4 + 2) * sizeof(AccDataType) * 2; // No.5
};
if(time_kernel)
{
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
};
return (0);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_forward_nhwc_c.hpp"
#include "batchnorm_forward_impl.hpp"
template <typename InOutDataType, typename AccDataType>
using ReferenceBatchNormFwdInstance =
ck::tensor_operation::host::ReferenceBatchNormFwd_Input_N_H_W_C_Output_C<InOutDataType,
AccDataType>;
static struct option long_options[] = {{"inOutLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class BatchNormFwdArg
{
private:
int option_index = 0;
public:
std::vector<size_t> inOutLengths;
bool do_verification = false;
bool updateMovingAverage;
bool saveMeanAndInvVariance;
int data_type = 0;
int init_method = 2;
bool time_kernel = false;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inOutLengths or -D, comma separated list of input tensor dimension "
"lengths, must have 4 integers for nhwc"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the batch-normalization "
"result by "
"comparing with the host-based batch-normalization"
<< std::endl;
std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)" << std::endl;
std::cout << "Arg2: 1/0 to indicate whether to update the moving average and variance "
"(0=no, 1=yes)"
<< std::endl;
std::cout << "Arg3: 1/0 to indicate whether to save the calculated mean and invVariance "
"(0=no, 1=yes)"
<< std::endl;
std::cout << "Arg4: init method used for bnScale and bnBias (0=no init, 1=single integer "
"value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg5: time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:v:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inOutLengths = getTypeValuesFromString<size_t>(optarg);
if(inOutLengths.size() != 4)
throw std::runtime_error(
"NHWC tensor layout should have 4 length values specified!");
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 5 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
data_type = std::atoi(argv[optind++]);
updateMovingAverage = std::atoi(argv[optind++]);
saveMeanAndInvVariance = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5 && data_type != 6)
return (-1);
return (0);
};
};
using namespace ck;
template <typename InOutDataType, typename AccDataType>
bool bnorm_fwd_nhwc_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t> inOutLengths,
bool updateMovingAverage,
bool saveMeanAndInvVariance,
double averageFactor,
double epsilon)
{
// for NHWC BatchNorm calculation of mean and meansquare
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
const std::vector<size_t> scaleBiasMeanVarLengths = {inOutLengths[3]};
// input data of the batchnorm forward algorithm
Tensor<InOutDataType> x(inOutLengths);
Tensor<AccDataType> bnScale(scaleBiasMeanVarLengths);
Tensor<AccDataType> bnBias(scaleBiasMeanVarLengths);
// output data of the batchnorm forward algorithm
Tensor<InOutDataType> y_ref(inOutLengths);
Tensor<InOutDataType> y(inOutLengths);
Tensor<AccDataType> resultSaveMean_ref(scaleBiasMeanVarLengths);
Tensor<AccDataType> resultSaveInvVariance_ref(scaleBiasMeanVarLengths);
Tensor<AccDataType> resultRunningMean_ref(scaleBiasMeanVarLengths);
Tensor<AccDataType> resultRunningVariance_ref(scaleBiasMeanVarLengths);
auto inOutStrides = x.mDesc.GetStrides();
auto scaleBiasMeanVarStrides = bnScale.mDesc.GetStrides();
std::size_t num_thread = std::thread::hardware_concurrency();
if(updateMovingAverage)
{
if constexpr(std::is_same<InOutDataType, int8_t>::value)
{
x.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
const float x_mean = 0.0f;
const float x_stddev = 2.5f;
const float noise_stddev = 0.04f;
resultRunningMean_ref.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_mean, noise_stddev}, num_thread);
resultRunningVariance_ref.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
}
else
{
const float x_mean = 0.0f;
const float x_stddev = 1.0f;
const float noise_stddev = 0.04f;
// input data in normal distribution
x.GenerateTensorValue(GeneratorTensor_4<InOutDataType>{x_mean, x_stddev}, num_thread);
// initialize the runningMean to be values with tiny variation to the mean of the x
// values
resultRunningMean_ref.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_mean, noise_stddev}, num_thread);
// initialize the runningVariance to be values with tiny variation to the variance of
// the x values
resultRunningVariance_ref.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
};
}
else
{
if constexpr(std::is_same<InOutDataType, int8_t>::value)
x.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
else
x.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0f, 5.0f}, num_thread);
};
if(do_verification)
{
switch(init_method)
{
case 0:
bnScale.GenerateTensorValue(GeneratorTensor_0<AccDataType>{}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_0<AccDataType>{}, num_thread);
break;
case 1:
bnScale.GenerateTensorValue(GeneratorTensor_1<AccDataType>{1}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0}, num_thread);
break;
case 2:
bnScale.GenerateTensorValue(GeneratorTensor_2<AccDataType>{-5, 5}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_2<AccDataType>{-5, 5}, num_thread);
break;
default:
bnScale.GenerateTensorValue(GeneratorTensor_3<AccDataType>{-5.0f, 5.0f}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_3<AccDataType>{-5.0f, 5.0f}, num_thread);
}
};
// these buffers are usually provided by the user application
DeviceMem x_dev(sizeof(InOutDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(InOutDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem bnScale_dev(sizeof(AccDataType) * bnScale.mDesc.GetElementSpaceSize());
DeviceMem bnBias_dev(sizeof(AccDataType) * bnBias.mDesc.GetElementSpaceSize());
// mean_dev or resultSaveMean_dev
DeviceMem resultSaveMean_dev(sizeof(AccDataType) *
resultSaveMean_ref.mDesc.GetElementSpaceSize());
// meansquare_dev or resultSaveInvVariance_dev
DeviceMem resultSaveInvVariance_dev(sizeof(AccDataType) *
resultSaveInvVariance_ref.mDesc.GetElementSpaceSize());
// resultRunningMean_dev
DeviceMem resultRunningMean_dev(sizeof(AccDataType) *
resultRunningMean_ref.mDesc.GetElementSpaceSize());
// resultRunningVariance_dev
DeviceMem resultRunningVariance_dev(sizeof(AccDataType) *
resultRunningVariance_ref.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
bnScale_dev.ToDevice(bnScale.mData.data());
bnBias_dev.ToDevice(bnBias.mData.data());
if(updateMovingAverage)
{
resultRunningMean_dev.ToDevice(resultRunningMean_ref.mData.data());
resultRunningVariance_dev.ToDevice(resultRunningVariance_ref.mData.data());
};
std::array<index_t, Rank> i_inOutLengths;
std::array<index_t, Rank> i_inOutStrides;
std::array<index_t, Rank - NumReduceDim> i_scaleBiasMeanVarLengths;
std::array<index_t, Rank - NumReduceDim> i_scaleBiasMeanVarStrides;
std::copy(inOutLengths.begin(), inOutLengths.end(), i_inOutLengths.begin());
std::copy(inOutStrides.begin(), inOutStrides.end(), i_inOutStrides.begin());
std::copy(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
i_scaleBiasMeanVarLengths.begin());
std::copy(scaleBiasMeanVarStrides.begin(),
scaleBiasMeanVarStrides.end(),
i_scaleBiasMeanVarStrides.begin());
int result = 0;
// used for saving meansquare
DeviceMem workspace(sizeof(AccDataType) * 2 * resultSaveMean_ref.mDesc.GetElementSpaceSize() +
128);
void* p_tmp_mean = workspace.GetDeviceBuffer();
void* p_tmp_meansquare =
static_cast<char*>(p_tmp_mean) +
(sizeof(AccDataType) * resultSaveMean_ref.mDesc.GetElementSpaceSize() + 63) / 64 * 64;
result = bnorm_fwd<InOutDataType, AccDataType, Rank, NumReduceDim, false>(
time_kernel,
updateMovingAverage,
saveMeanAndInvVariance,
{0, 1, 2},
i_inOutLengths,
i_inOutStrides,
i_inOutStrides,
i_scaleBiasMeanVarLengths,
i_scaleBiasMeanVarStrides,
x_dev.GetDeviceBuffer(),
bnScale_dev.GetDeviceBuffer(),
bnBias_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
averageFactor,
updateMovingAverage ? resultRunningMean_dev.GetDeviceBuffer() : nullptr,
updateMovingAverage ? resultRunningVariance_dev.GetDeviceBuffer() : nullptr,
epsilon,
saveMeanAndInvVariance ? resultSaveMean_dev.GetDeviceBuffer() : nullptr,
saveMeanAndInvVariance ? resultSaveInvVariance_dev.GetDeviceBuffer() : nullptr,
p_tmp_mean,
p_tmp_meansquare);
if(result < 0)
return (false);
bool pass = true;
if(do_verification)
{
auto batchNormFwd_ref = ReferenceBatchNormFwdInstance<InOutDataType, AccDataType>{};
auto argument_ptr_ref = batchNormFwd_ref.MakeArgumentPointer(
i_inOutLengths,
i_inOutStrides,
i_inOutStrides,
i_scaleBiasMeanVarLengths,
i_scaleBiasMeanVarStrides,
x.mData.data(),
bnScale.mData.data(),
bnBias.mData.data(),
y_ref.mData.data(),
0.1, // exponentialAverageFactor
updateMovingAverage ? resultRunningMean_ref.mData.data() : nullptr, // resultRunningMean
updateMovingAverage ? resultRunningVariance_ref.mData.data()
: nullptr, // resultRunningVariance
epsilon,
saveMeanAndInvVariance ? resultSaveMean_ref.mData.data() : nullptr,
saveMeanAndInvVariance ? resultSaveInvVariance_ref.mData.data() : nullptr);
if(!batchNormFwd_ref.IsSupportedArgument(argument_ptr_ref.get()))
{
std::cout
<< "The runtime parameters seems not supported by the BatchNorm instance, exiting!"
<< std::endl;
return (-2);
};
auto invoker_ptr_ref = batchNormFwd_ref.MakeInvokerPointer();
(void)invoker_ptr_ref->Run(argument_ptr_ref.get());
y_dev.FromDevice(y.mData.data());
pass = pass && ck::utils::check_err(y.mData, y_ref.mData);
if(updateMovingAverage)
{
Tensor<AccDataType> resultRunningMean(scaleBiasMeanVarLengths);
Tensor<AccDataType> resultRunningVariance(scaleBiasMeanVarLengths);
resultRunningMean_dev.FromDevice(resultRunningMean.mData.data());
resultRunningVariance_dev.FromDevice(resultRunningVariance.mData.data());
pass =
pass && ck::utils::check_err(resultRunningMean.mData, resultRunningMean_ref.mData);
pass = pass && ck::utils::check_err(resultRunningVariance.mData,
resultRunningVariance_ref.mData);
};
if(saveMeanAndInvVariance)
{
Tensor<AccDataType> resultSaveMean(scaleBiasMeanVarLengths);
Tensor<AccDataType> resultSaveInvVariance(scaleBiasMeanVarLengths);
resultSaveMean_dev.FromDevice(resultSaveMean.mData.data());
resultSaveInvVariance_dev.FromDevice(resultSaveInvVariance.mData.data());
pass = pass && ck::utils::check_err(resultSaveMean.mData, resultSaveMean_ref.mData);
pass = pass && ck::utils::check_err(resultSaveInvVariance.mData,
resultSaveInvVariance_ref.mData);
};
};
return (pass);
};
const double epsilon = std::numeric_limits<float>::epsilon();
static const double averageFactor = 0.1;
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
BatchNormFwdArg arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
pass = bnorm_fwd_nhwc_test<ck::half_t, float>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.updateMovingAverage,
arg.saveMeanAndInvVariance,
averageFactor,
epsilon);
}
else if(arg.data_type == 1)
{
pass = bnorm_fwd_nhwc_test<float, float>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.updateMovingAverage,
arg.saveMeanAndInvVariance,
averageFactor,
epsilon);
}
else if(arg.data_type == 3)
{
pass = bnorm_fwd_nhwc_test<int8_t, float>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.updateMovingAverage,
arg.saveMeanAndInvVariance,
averageFactor,
epsilon);
}
else if(arg.data_type == 5)
{
pass = bnorm_fwd_nhwc_test<ck::bhalf_t, float>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.updateMovingAverage,
arg.saveMeanAndInvVariance,
averageFactor,
epsilon);
}
else if(arg.data_type == 6)
{
pass = bnorm_fwd_nhwc_test<double, double>(arg.do_verification,
arg.init_method,
arg.time_kernel,
arg.inOutLengths,
arg.updateMovingAverage,
arg.saveMeanAndInvVariance,
averageFactor,
epsilon);
}
}
else
{
pass = bnorm_fwd_nhwc_test<ck::half_t, float>(true,
2,
false, // don't time kernel
{128, 16, 16, 1024},
true,
false,
averageFactor,
epsilon);
};
return (pass ? 0 : 1);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cassert>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "batchnorm_common.hpp"
template <typename InOutDataType,
typename AccDataType,
ck::index_t Rank,
ck::index_t NumBatchNormReduceDim,
bool fastest_dim_is_reduced = false>
int bnorm_infer(
bool time_kernel,
const std::array<int, NumBatchNormReduceDim> reduceDims,
const std::array<ck::index_t, Rank> xyLengths,
const std::array<ck::index_t, Rank> xStrides,
const std::array<ck::index_t, Rank> yStrides,
const std::array<ck::index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarLengths,
const std::array<ck::index_t, Rank - NumBatchNormReduceDim> bnScaleBiasMeanVarStrides,
const void* p_x,
const void* p_scale,
const void* p_bias,
double epsilon,
const void* p_estimatedMean,
const void* p_estimatedVariance,
void* p_y)
{
(void)bnScaleBiasMeanVarLengths;
static_assert(NumBatchNormReduceDim < Rank,
"Invalid number of reduced dimensions for batchnorm!");
using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwise<
ck::Tuple<InOutDataType, AccDataType, AccDataType, AccDataType, AccDataType>, // x, mean,
// variance,
// scale,
// bias,
ck::Tuple<InOutDataType>, // y
NormalizeInInfer,
Rank,
2, // MPerthread
ck::Sequence<1, 1, 1, 1, 1>, // x, mean, variance, scale, bias
ck::Sequence<1>>; // scalarPerVector: y
auto invariantDims = get_invariant_dims<Rank, NumBatchNormReduceDim>(reduceDims);
std::array<ck::index_t, Rank> aligned_scaleBiasMeanVarStrides{0};
int i = 0;
for(auto dim : invariantDims)
{
assert(xyLengths[dim] == bnScaleBiasMeanVarLengths[i]);
aligned_scaleBiasMeanVarStrides[dim] = bnScaleBiasMeanVarStrides[i];
i++;
};
int32_t reduceLength = 1;
for(auto dim : reduceDims)
reduceLength *= xyLengths[dim];
int32_t invariantLength = 1;
for(auto dim : invariantDims)
invariantLength *= xyLengths[dim];
size_t total_length = static_cast<size_t>(invariantLength) * reduceLength;
float avg_time = 0.0f;
std::size_t num_bytes = 0;
auto dev_normalize = DeviceNormalizeInstance{};
auto argument_ptr1 = dev_normalize.MakeArgumentPointer(
xyLengths,
{xStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides,
aligned_scaleBiasMeanVarStrides},
{yStrides},
{p_x, p_estimatedMean, p_estimatedVariance, p_scale, p_bias},
{p_y},
NormalizeInInfer{epsilon});
if(!dev_normalize.IsSupportedArgument(argument_ptr1.get()))
{
std::cout << "The runtime parameters seems not supported by the Devic, exiting!"
<< std::endl;
return (-1);
};
auto invoker_ptr1 = dev_normalize.MakeInvokerPointer();
avg_time += invoker_ptr1->Run(argument_ptr1.get(), StreamConfig{nullptr, time_kernel});
num_bytes += (total_length * (1 * sizeof(InOutDataType) + 4 * sizeof(AccDataType)) +
total_length * sizeof(InOutDataType));
if(time_kernel)
{
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
};
return (0);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <limits>
#include <iostream>
#include <vector>
#include <array>
#include <algorithm>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_infer_nhwc_c.hpp"
#include "batchnorm_infer_impl.hpp"
template <typename InOutDataType, typename AccDataType>
using ReferenceBatchNormInferInstance =
ck::tensor_operation::host::ReferenceBatchNormInfer_Input_N_H_W_C_Output_C<InOutDataType,
AccDataType>;
static struct option long_options[] = {{"inOutLengths", required_argument, nullptr, 'D'},
{"verify", required_argument, nullptr, 'v'},
{"help", no_argument, nullptr, '?'},
{nullptr, 0, nullptr, 0}};
class BatchNormInferArg
{
private:
int option_index = 0;
public:
std::vector<size_t> inOutLengths;
bool do_verification = false;
int data_type = 0;
int init_method = 2;
bool time_kernel = false;
public:
void show_usage(const char* cmd)
{
std::cout << "Usage of " << cmd << std::endl;
std::cout << "--inOutLengths or -D, comma separated list of input tensor dimension "
"lengths, must have 4 integers for nhwc"
<< std::endl;
std::cout << "--verify or -v, 1/0 to indicate whether to verify the batch-normalization "
"result by "
"comparing with the host-based batch-normalization"
<< std::endl;
std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64)" << std::endl;
std::cout << "Arg2: init method used for bnScale and bnBias (0=no init, 1=single integer "
"value, 2=scope integer "
"value, 3=decimal value)"
<< std::endl;
std::cout << "Arg3: time kernel (0=no, 1=yes)" << std::endl;
};
int processArgs(int argc, char* argv[])
{
using ck::host_common::getTypeValuesFromString;
int ch;
while(1)
{
ch = getopt_long(argc, argv, "D:v:", long_options, &option_index);
if(ch == -1)
break;
switch(ch)
{
case 'D':
if(!optarg)
throw std::runtime_error("Invalid option format!");
inOutLengths = getTypeValuesFromString<size_t>(optarg);
if(inOutLengths.size() != 4)
throw std::runtime_error(
"NHWC tensor layout should have 4 length values specified!");
break;
case 'v':
if(!optarg)
throw std::runtime_error("Invalid option format!");
do_verification = static_cast<bool>(std::atoi(optarg));
break;
case '?':
if(std::string(long_options[option_index].name) == "help")
{
show_usage(argv[0]);
return (-1);
};
break;
default: show_usage(argv[0]); return (-1);
};
};
if(optind + 3 > argc)
throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
data_type = std::atoi(argv[optind++]);
init_method = std::atoi(argv[optind++]);
time_kernel = static_cast<bool>(std::atoi(argv[optind]));
if(data_type != 0 && data_type != 1 && data_type != 3 && data_type != 5 && data_type != 6)
return (-1);
return (0);
};
};
using namespace ck;
template <typename InOutDataType, typename AccDataType>
bool bnorm_infer_nhwc_test(bool do_verification,
int init_method,
bool time_kernel,
const std::vector<size_t> inOutLengths,
double epsilon)
{
// for NHWC BatchNorm calculation of mean and meansquare
constexpr int Rank = 4;
constexpr int NumReduceDim = 3;
const std::vector<size_t> scaleBiasMeanVarLengths = {inOutLengths[3]};
// input data of the batchnorm forward algorithm
Tensor<InOutDataType> x(inOutLengths);
Tensor<AccDataType> bnScale(scaleBiasMeanVarLengths);
Tensor<AccDataType> bnBias(scaleBiasMeanVarLengths);
// output data of the batchnorm forward algorithm
Tensor<InOutDataType> y_ref(inOutLengths);
Tensor<InOutDataType> y(inOutLengths);
Tensor<AccDataType> estimatedMean(scaleBiasMeanVarLengths);
Tensor<AccDataType> estimatedVariance(scaleBiasMeanVarLengths);
auto inOutStrides = x.mDesc.GetStrides();
auto scaleBiasMeanVarStrides = bnScale.mDesc.GetStrides();
std::size_t num_thread = std::thread::hardware_concurrency();
if constexpr(std::is_same<InOutDataType, int8_t>::value)
{
x.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
const float x_mean = 0.0f;
const float x_stddev = 2.5f;
const float noise_stddev = 0.0001f;
estimatedMean.GenerateTensorValue(GeneratorTensor_4<AccDataType>{x_mean, noise_stddev},
num_thread);
estimatedVariance.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
}
else
{
const float x_mean = 0.0f;
const float x_stddev = 1.0f;
const float noise_stddev = 0.0001f;
x.GenerateTensorValue(GeneratorTensor_4<InOutDataType>{x_mean, x_stddev}, num_thread);
// initialize the savedMean to be values with tiny variation to the mean of the x values
estimatedMean.GenerateTensorValue(GeneratorTensor_4<AccDataType>{x_mean, noise_stddev},
num_thread);
// initialize the variance to be values with tiny variation to the variance of the x values
estimatedVariance.GenerateTensorValue(
GeneratorTensor_4<AccDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);
};
if(do_verification)
{
switch(init_method)
{
case 0:
bnScale.GenerateTensorValue(GeneratorTensor_0<AccDataType>{}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_0<AccDataType>{}, num_thread);
break;
case 1:
bnScale.GenerateTensorValue(GeneratorTensor_1<AccDataType>{1}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0}, num_thread);
break;
case 2:
bnScale.GenerateTensorValue(GeneratorTensor_2<AccDataType>{-5, 5}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_2<AccDataType>{-5, 5}, num_thread);
break;
default:
bnScale.GenerateTensorValue(GeneratorTensor_3<AccDataType>{-5.0f, 5.0f}, num_thread);
bnBias.GenerateTensorValue(GeneratorTensor_3<AccDataType>{-5.0f, 5.0f}, num_thread);
}
};
// these buffers are usually provided by the user application
DeviceMem x_dev(sizeof(InOutDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(InOutDataType) * y.mDesc.GetElementSpaceSize());
DeviceMem bnScale_dev(sizeof(AccDataType) * bnScale.mDesc.GetElementSpaceSize());
DeviceMem bnBias_dev(sizeof(AccDataType) * bnBias.mDesc.GetElementSpaceSize());
// mean_dev or resultSaveMean_dev
DeviceMem estimatedMean_dev(sizeof(AccDataType) * estimatedMean.mDesc.GetElementSpaceSize());
// meansquare_dev or resultSaveInvVariance_dev
DeviceMem estimatedVariance_dev(sizeof(AccDataType) *
estimatedVariance.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
bnScale_dev.ToDevice(bnScale.mData.data());
bnBias_dev.ToDevice(bnBias.mData.data());
estimatedMean_dev.ToDevice(estimatedMean.mData.data());
estimatedVariance_dev.ToDevice(estimatedVariance.mData.data());
using ck::index_t;
std::array<index_t, Rank> i_inOutLengths;
std::array<index_t, Rank> i_inOutStrides;
std::array<index_t, Rank - NumReduceDim> i_scaleBiasMeanVarLengths;
std::array<index_t, Rank - NumReduceDim> i_scaleBiasMeanVarStrides;
std::copy(inOutLengths.begin(), inOutLengths.end(), i_inOutLengths.begin());
std::copy(inOutStrides.begin(), inOutStrides.end(), i_inOutStrides.begin());
std::copy(scaleBiasMeanVarLengths.begin(),
scaleBiasMeanVarLengths.end(),
i_scaleBiasMeanVarLengths.begin());
std::copy(scaleBiasMeanVarStrides.begin(),
scaleBiasMeanVarStrides.end(),
i_scaleBiasMeanVarStrides.begin());
int result = 0;
result = bnorm_infer<InOutDataType, AccDataType, Rank, NumReduceDim, false>(
time_kernel,
{0, 1, 2},
i_inOutLengths,
i_inOutStrides,
i_inOutStrides,
i_scaleBiasMeanVarLengths,
i_scaleBiasMeanVarStrides,
x_dev.GetDeviceBuffer(),
bnScale_dev.GetDeviceBuffer(),
bnBias_dev.GetDeviceBuffer(),
epsilon,
estimatedMean_dev.GetDeviceBuffer(),
estimatedVariance_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer());
if(result < 0)
return (false);
bool pass = true;
if(do_verification)
{
auto batchNormInfer_ref = ReferenceBatchNormInferInstance<InOutDataType, AccDataType>{};
auto argument_ptr_ref =
batchNormInfer_ref.MakeArgumentPointer(i_inOutLengths,
i_inOutStrides,
i_inOutStrides,
i_scaleBiasMeanVarLengths,
i_scaleBiasMeanVarStrides,
x.mData.data(),
bnScale.mData.data(),
bnBias.mData.data(),
epsilon,
estimatedMean.mData.data(),
estimatedVariance.mData.data(),
y_ref.mData.data());
if(!batchNormInfer_ref.IsSupportedArgument(argument_ptr_ref.get()))
{
std::cout
<< "The runtime parameters seems not supported by the BatchNorm instance, exiting!"
<< std::endl;
return (-2);
};
auto invoker_ptr_ref = batchNormInfer_ref.MakeInvokerPointer();
(void)invoker_ptr_ref->Run(argument_ptr_ref.get());
y_dev.FromDevice(y.mData.data());
pass = pass && ck::utils::check_err(y.mData, y_ref.mData);
};
return (pass);
};
static const double epsilon = std::numeric_limits<float>::epsilon();
int main(int argc, char* argv[])
{
bool pass = true;
if(argc > 1)
{
BatchNormInferArg arg;
if(arg.processArgs(argc, argv) < 0)
return (-1);
if(arg.data_type == 0)
{
pass = bnorm_infer_nhwc_test<ck::half_t, float>(
arg.do_verification, arg.init_method, arg.time_kernel, arg.inOutLengths, epsilon);
}
else if(arg.data_type == 1)
{
pass = bnorm_infer_nhwc_test<float, float>(
arg.do_verification, arg.init_method, arg.time_kernel, arg.inOutLengths, epsilon);
}
else if(arg.data_type == 3)
{
pass = bnorm_infer_nhwc_test<int8_t, float>(
arg.do_verification, arg.init_method, arg.time_kernel, arg.inOutLengths, epsilon);
}
else if(arg.data_type == 5)
{
pass = bnorm_infer_nhwc_test<ck::bhalf_t, float>(
arg.do_verification, arg.init_method, arg.time_kernel, arg.inOutLengths, epsilon);
}
else if(arg.data_type == 6)
{
pass = bnorm_infer_nhwc_test<double, double>(
arg.do_verification, arg.init_method, arg.time_kernel, arg.inOutLengths, epsilon);
};
}
else
{
pass = bnorm_infer_nhwc_test<ck::half_t, float>(true,
2,
false, // don't time kernel
{128, 16, 16, 1024},
epsilon);
};
return (pass ? 0 : 1);
}
......@@ -30,7 +30,7 @@ add_subdirectory(12_reduce)
add_subdirectory(13_pool2d_fwd)
add_subdirectory(14_gemm_xdl_requant_relu_requant)
add_subdirectory(15_grouped_gemm)
add_subdirectory(16_gemm_reduce)
add_subdirectory(16_gemm_multi_d_multi_reduces)
add_subdirectory(17_convnd_bwd_data)
add_subdirectory(18_batched_gemm_reduce)
add_subdirectory(19_binary_elementwise)
......@@ -42,6 +42,11 @@ add_subdirectory(24_batched_gemm)
add_subdirectory(25_gemm_bias_e_permute)
add_subdirectory(26_contraction)
add_subdirectory(27_layernorm)
add_subdirectory(28_grouped_gemm_bias)
add_subdirectory(30_grouped_convnd_fwd_bias_relu)
add_subdirectory(31_splitK_gemm)
add_subdirectory(28_grouped_gemm_bias_e_permute)
add_subdirectory(29_batched_gemm_bias_e_permute)
add_subdirectory(30_grouped_convnd_fwd_bias_relu_add)
add_subdirectory(31_batched_gemm_gemm)
add_subdirectory(32_batched_gemm_scale_softmax_gemm)
add_subdirectory(33_multiple_reduce)
add_subdirectory(34_batchnorm)
add_subdirectory(35_splitK_gemm)
......@@ -4,6 +4,7 @@
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/sequence_helper.hpp"
#include "ck/tensor_description/multi_index_transform.hpp"
namespace ck {
......@@ -159,6 +160,12 @@ struct TensorDescriptor
return transforms_[Number<itran>{}].GetUpperLengths()[Number<idim_up>{}];
}
__host__ __device__ constexpr auto GetLengths() const
{
// FIXME: use Tuple of reference instead
return generate_sequence_v2([&](auto I) { return GetLength(I); }, Number<ndim_visible_>{});
}
__host__ __device__ constexpr auto GetElementSize() const { return element_size_; }
__host__ __device__ constexpr auto GetElementSpaceSize() const { return element_space_size_; }
......
......@@ -25,6 +25,22 @@ constexpr LoopScheduler make_default_loop_scheduler()
#endif // if CK_EXPERIMENTAL_INTER_WAVE_SCHEDULING
}
template <index_t MNXdlPerWave, index_t MNWaves, index_t MNPerXdl, typename TileDesc_K0_MN_K1>
__host__ __device__ static constexpr auto
MakeGemmMmaTileDescriptor_MN0_MN1_MN2_K(const TileDesc_K0_MN_K1&)
{
constexpr index_t K0 = TileDesc_K0_MN_K1{}.GetLength(Number<0>{});
constexpr index_t K1 = TileDesc_K0_MN_K1{}.GetLength(Number<2>{});
return transform_tensor_descriptor(
TileDesc_K0_MN_K1{},
make_tuple(make_merge_transform_v3_division_mod(make_tuple(Number<K0>{}, Number<K1>{})),
make_unmerge_transform(
make_tuple(Number<MNXdlPerWave>{}, Number<MNWaves>{}, Number<MNPerXdl>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
......@@ -585,4 +601,359 @@ constexpr auto BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector()
}
};
// Blockwise gemm supporting
// 1. regular XDL output M2_M3_M4_M2 and transposed XDL output M2_N2_N3_N4
// 2. decoupled input tile descriptor and mma tile descriptor in order to support both vgpr and LDS
// source buffer
// 3. configurable k index starting position and step size after each FMA/XDL instruction
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename ATileDesc,
typename BTileDesc,
typename AMmaTileDesc,
typename BMmaTileDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack,
bool TransposeC = false,
index_t AMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{}.K0PerXdlops,
index_t BMmaKStride =
KPack* XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{}.K0PerXdlops>
struct BlockwiseGemmXdlops_v2
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
static constexpr index_t WaveSize = get_warp_size();
static constexpr index_t A_K0 = ATileDesc{}.GetLength(I0);
static constexpr index_t B_K0 = BTileDesc{}.GetLength(I0);
static constexpr index_t A_K1 = ATileDesc{}.GetLength(I2);
static constexpr index_t B_K1 = BTileDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack, TransposeC>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = ThisThreadBlock::GetThreadId();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPack * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPack * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
using Tuple4 = decltype(CalculateAThreadOriginDataIndex());
__host__ __device__ BlockwiseGemmXdlops_v2(Tuple4 a_origin = CalculateAThreadOriginDataIndex(),
Tuple4 b_origin = CalculateBThreadOriginDataIndex())
: a_thread_copy_(a_origin), b_thread_copy_(b_origin)
{
static_assert(AMmaTileDesc::IsKnownAtCompileTime() && BMmaTileDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
"ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
__host__ __device__ BlockwiseGemmXdlops_v2(const BlockwiseGemmXdlops_v2& other)
: a_thread_copy_(other.a_origin), b_thread_copy_(other.b_origin)
{
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, N, M0, M1, M2));
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
// transposed XDL output supporting C_xdl' = B_xdl' * A_xdl'
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_N2_N3_N4(c_block_desc_m0_n0_m1_n1_m2_n2);
}
// XDL output supporting C_xdl = A_xdl * B_xdl
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
static constexpr AMmaTileDesc a_block_desc_m0_m1_m2_k;
static constexpr BMmaTileDesc b_block_desc_n0_n1_n2_k;
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
b_thread_desc_.GetElementSpaceSize());
static_for<0, KPerThread / KPack, 1>{}([&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, Number<k * AMmaKStride>{}),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
b_thread_copy_.Run(b_block_desc_n0_n1_n2_k,
make_tuple(n0, I0, I0, Number<k * BMmaKStride>{}),
b_block_buf,
b_thread_desc_,
make_tuple(I0, I0, I0, I0),
b_thread_buf);
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, i))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
protected:
// A[M0, M1, M2, KPack]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPack>{}));
// B[N0, N1, N2, KPack]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPack>{}));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(b_block_desc_n0_n1_n2_k),
decltype(b_thread_desc_),
Sequence<1, 1, 1, KPack>,
Sequence<0, 1, 2, 3>,
3,
B_K1,
B_K1>;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/warp/xdlops_gemm.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
namespace ck {
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename AK0MK1BlockDesc,
typename BK0K0BN0N1N2N3K1BlockDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t MRepeat,
index_t NRepeat,
index_t KPack>
struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t WaveSize = 64;
static constexpr index_t KPerBlock = K0PerBlock * KPack;
static constexpr index_t A_K0 = AK0MK1BlockDesc{}.GetLength(I0);
static constexpr index_t A_K1 = AK0MK1BlockDesc{}.GetLength(I2);
static constexpr auto xdlops_gemm = XdlopsGemm<FloatAB, MPerXDL, NPerXDL, KPack>{};
static constexpr index_t KPerThread = KPerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t K0PerThread = K0PerBlock / xdlops_gemm.K0PerXdlops;
static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerXDL);
static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerXDL);
StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
FloatAcc,
MRepeat * NRepeat,
xdlops_gemm.GetRegSizePerXdlops(),
true>
c_thread_buf_;
__host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
__device__ static auto GetWaveIdx()
{
const index_t thread_id = get_thread_local_1d_id();
constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
}
__device__ static auto CalculateAThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto xdlops_a_idx = xdlops_gemm.CalculateAThreadOriginDataIndex();
return make_tuple(0, waveId_m, xdlops_a_idx[I1], KPerThread * xdlops_a_idx[I0]);
}
__device__ static auto CalculateBThreadOriginDataIndex()
{
const auto wave_idx = GetWaveIdx();
const auto waveId_n = wave_idx[I1];
const auto xdlops_b_idx = xdlops_gemm.CalculateBThreadOriginDataIndex();
return make_tuple(0, waveId_n, xdlops_b_idx[I1], KPerThread * xdlops_b_idx[I0]);
}
template <index_t m0, index_t n0, index_t xdlops_i, index_t blk_i>
__device__ static auto
CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>, Number<xdlops_i>, Number<blk_i>)
{
const auto wave_idx = GetWaveIdx();
const auto waveId_m = wave_idx[I0];
const auto waveId_n = wave_idx[I1];
const auto blk_idx = xdlops_gemm.GetBeginOfThreadBlk(xdlops_i, blk_i);
constexpr auto mrepeat_mwave_mperxdl_to_m_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
constexpr auto nrepeat_nwave_nperxdl_to_n_adaptor = make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0, 1, 2>{}));
const index_t c_thread_m = mrepeat_mwave_mperxdl_to_m_adaptor.CalculateBottomIndex(
make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
const index_t c_thread_n = nrepeat_nwave_nperxdl_to_n_adaptor.CalculateBottomIndex(
make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
return make_tuple(c_thread_m, c_thread_n);
}
__host__ __device__ BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1r1()
{
static_assert(AK0MK1BlockDesc::IsKnownAtCompileTime() &&
BK0K0BN0N1N2N3K1BlockDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(BlockSize == MWaves * NWaves * WaveSize,
"BlockSize != MWaves * NWaves * WaveSize\n");
static_assert(MPerBlock % (MPerXDL * MRepeat) == 0 && NPerBlock % (NPerXDL * NRepeat) == 0,
"wrong!");
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCThreadDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_m0_m1_m2_n_tblk_lens = xdlops_gemm.GetCM0M1M2NThreadBlkLengths();
constexpr auto M0 = c_m0_m1_m2_n_tblk_lens[I0];
constexpr auto M1 = c_m0_m1_m2_n_tblk_lens[I1];
constexpr auto M2 = c_m0_m1_m2_n_tblk_lens[I2];
constexpr auto N = c_m0_m1_m2_n_tblk_lens[I3];
return make_naive_tensor_descriptor_packed(
make_tuple(I1, Number<MRepeat>{}, Number<NRepeat>{}, I1, I1, M0, M1, M2, N));
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_block_desc_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto GetCBlockDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2()
{
constexpr auto c_block_desc_g_m0_n0_m1_n1_m2_n2 =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeat>{},
Number<NRepeat>{},
Number<MWaves>{},
Number<NWaves>{},
Number<MPerXDL>{},
Number<NPerXDL>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_block_desc_g_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto c_grid_desc_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{}));
return xdlops_gemm.MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m0_n0_m1_n1_m2_n2);
}
template <typename CGridDesc_G_M_N>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(const CGridDesc_G_M_N& c_grid_desc_g_m_n)
{
const auto G = c_grid_desc_g_m_n.GetLength(I0);
const auto M = c_grid_desc_g_m_n.GetLength(I1);
const auto N = c_grid_desc_g_m_n.GetLength(I2);
const auto c_grid_desc_g_m0_n0_m1_n1_m2_n2 = transform_tensor_descriptor(
c_grid_desc_g_m_n,
make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(M / (MWaves * MPerXDL), MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(N / (NWaves * NPerXDL), NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
c_grid_desc_g_m0_n0_m1_n1_m2_n2);
}
__host__ __device__ static constexpr auto MakeABlockDescriptor_M0_M1_M2_K()
{
return transform_tensor_descriptor(
AK0MK1BlockDesc{},
make_tuple(
make_merge_transform_v3_division_mod(make_tuple(Number<A_K0>{}, Number<A_K1>{})),
make_unmerge_transform(
make_tuple(Number<MRepeat>{}, Number<MWaves>{}, Number<MPerXDL>{}))),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}),
make_tuple(Sequence<3>{}, Sequence<0, 1, 2>{}));
}
__device__ void MoveABlockSliceWindow()
{
a_thread_copy_.MoveSrcSliceWindow(a_block_desc_m0_m1_m2_k,
make_multi_index(0, 0, 0, K0PerBlock * KPack));
}
__device__ void ResetABlockStartWindow()
{
a_thread_copy_.SetSrcCoord(CalculateAThreadOriginDataIndex());
}
static constexpr auto a_block_desc_m0_m1_m2_k = MakeABlockDescriptor_M0_M1_M2_K();
template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
__device__ void Run(const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_thread_buf,
CThreadBuffer& c_thread_buf) const
{
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAB>(
a_thread_desc_.GetElementSpaceSize());
static_for<0, MRepeat, 1>{}([&](auto m0) {
// read A
a_thread_copy_.Run(a_block_desc_m0_m1_m2_k,
make_tuple(m0, I0, I0, I0),
a_block_buf,
a_thread_desc_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
static_for<0, NRepeat, 1>{}([&](auto n0) {
// read B
static_for<0, KPerThread, KPack>{}([&](auto k) {
vector_type<FloatAB, KPack> a_thread_vec;
vector_type<FloatAB, KPack> b_thread_vec;
constexpr index_t k0 = k / KPack;
static_for<0, KPack, 1>{}([&](auto i) {
a_thread_vec.template AsType<FloatAB>()(i) = a_thread_buf
[Number<a_thread_desc_.CalculateOffset(make_tuple(0, 0, 0, k + i))>{}];
b_thread_vec.template AsType<FloatAB>()(i) = b_thread_buf
[Number<b_thread_desc_.CalculateOffset(make_tuple(k0, n0, i))>{}];
});
using mfma_input_type =
typename vector_type<FloatAB, xdlops_gemm.K1PerXdlops>::type;
constexpr index_t c_offset =
c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
xdlops_gemm.template Run(
a_thread_vec.template AsType<mfma_input_type>(),
b_thread_vec.template AsType<mfma_input_type>(),
c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
});
});
});
}
private:
// A[M0, M1, M2, KPerThread]
static constexpr auto a_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(I1, I1, I1, Number<KPerThread>{}));
// B[N0, N1, N2, KPerThread]
static constexpr auto b_thread_desc_ =
make_naive_tensor_descriptor_packed(make_tuple(Number<K0PerThread>{}, // KPerThread
Number<NRepeat>{}, // repeat
Number<KPack>{}));
// C[M, N, NumRegXdlops]
static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, xdlops_gemm.GetRegSizePerXdlops()));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4<FloatAB,
FloatAB,
decltype(a_block_desc_m0_m1_m2_k),
decltype(a_thread_desc_),
Sequence<1, 1, 1, KPerThread>,
Sequence<0, 1, 2, 3>,
3,
A_K1,
A_K1>;
AThreadCopy a_thread_copy_{CalculateAThreadOriginDataIndex()};
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
namespace ck {
template <index_t BlockSize,
typename AccDataType,
typename ThreadMap_M_K, // thread_id to m_k
typename ThreadClusterDesc_M_K,
typename ThreadSliceDesc_M_K>
struct BlockwiseSoftmax
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t MRepeat = ThreadSliceDesc_M_K{}.GetLength(I0);
static constexpr index_t KRepeat = ThreadSliceDesc_M_K{}.GetLength(I1);
using ThreadSliceDesc_M = decltype(
make_naive_tensor_descriptor_packed(make_tuple(ThreadSliceDesc_M_K{}.GetLength(I0))));
using ThreadwiseMaxReduce = ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Max,
false>;
using ThreadClusterLengths_M_K = decltype(ThreadClusterDesc_M_K{}.GetLengths());
using BlockwiseMaxReduce = PartitionedBlockwiseReduction_v2<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadMap_M_K,
reduce::Max,
false>;
using BlockwiseSumReduce = PartitionedBlockwiseReduction_v2<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadMap_M_K,
reduce::Add,
false>;
using ThreadwiseSumReduce = ThreadwiseReduction<AccDataType,
ThreadSliceDesc_M_K,
ThreadSliceDesc_M,
reduce::Add,
false>;
using BufferType = StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MRepeat, true>;
template <typename CThreadBuffer, typename WorkspaceBuffer>
__host__ __device__ void Run(CThreadBuffer& in_thread_buf, WorkspaceBuffer& reduce_work_buf)
{
// find max value
static_for<0, MRepeat, 1>{}([&](auto I) {
max_value_buf(I) = reduce::Max::template GetIdentityValue<AccDataType>();
});
ThreadwiseMaxReduce::Reduce(in_thread_buf, max_value_buf);
static_for<0, MRepeat, 1>{}([&](auto I) {
BlockwiseMaxReduce::Reduce(reduce_work_buf, max_value_buf(I));
block_sync_lds();
});
// calculate exp for elements, P=exp(s-max)
static_for<0, MRepeat, 1>{}([&](auto iM) {
static_for<0, KRepeat, 1>{}([&](auto iK) {
auto offset = Number<ThreadSliceDesc_M_K{}.CalculateOffset(make_tuple(iM, iK))>{};
in_thread_buf(offset) = math::exp(in_thread_buf[offset] - max_value_buf(iM));
});
});
// sum data
static_for<0, MRepeat, 1>{}([&](auto I) {
sum_value_buf(I) = reduce::Add::template GetIdentityValue<AccDataType>();
});
ThreadwiseSumReduce::Reduce(in_thread_buf, sum_value_buf);
static_for<0, MRepeat, 1>{}([&](auto I) {
BlockwiseSumReduce::Reduce(reduce_work_buf, sum_value_buf(I));
block_sync_lds();
});
}
BufferType max_value_buf;
BufferType sum_value_buf;
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/reduction_common.hpp"
namespace ck {
// clang-format off
// Assume:
// 1) work_buffer is buffer (typically LDS) allocated outside as workspace
// 2) work_buffer has T elements, and space size is no less than 3*BlockSize
// 3) mean_value, var_value and count is the input data in vgpr from each thread
// 4) mean_value, var_value and count is the over-written reduced output in vgpr for each thread
// 5) Merge mean and M from ThreadwiseWelford
// clang-format on
template <typename T,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterArrangeOrder,
bool GetActualVariance = true>
struct BlockwiseWelford
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
"The product of cluster lengths should be same as BlockSize!");
static constexpr auto BufferLength_M = ThreadClusterLengths_M_K::At(0);
static constexpr auto BufferLength_K = ThreadClusterLengths_M_K::At(1);
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<BufferLength_M>{}, Number<BufferLength_K>{}));
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
__device__ static inline void
Merge(T& mean_a, T& var_a, int& count_a, T mean_b, T var_b, int count_b)
{
int count = count_a + count_b;
T count_b_over_count = count == 0 ? type_convert<T>(0) : type_convert<T>(count_b) / count;
T delta = mean_b - mean_a;
mean_a += delta * count_b_over_count;
var_a += var_b + delta * delta * count_a * count_b_over_count;
count_a = count;
}
__device__ static void Run(T& mean_value, T& var_value, int& count)
{
__shared__ T mean_block_buf[BlockSize];
__shared__ T var_block_buf[BlockSize];
__shared__ int count_block_buf[BlockSize];
constexpr auto cluster_len_shift = get_shift<BufferLength_K>();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[Number<0>{}];
const auto thread_k_cluster_id = thread_cluster_idx[Number<1>{}];
index_t offset1 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx);
mean_block_buf[offset1] = mean_value;
var_block_buf[offset1] = var_value;
count_block_buf[offset1] = count;
block_sync_lds();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << (cluster_len_shift - 1 - I());
if(thread_k_cluster_id < indOffset)
{
index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx +
make_tuple(0, indOffset));
T mean1 = mean_block_buf[offset1];
T var1 = var_block_buf[offset1];
int count1 = count_block_buf[offset1];
T mean2 = mean_block_buf[offset2];
T var2 = var_block_buf[offset2];
int count2 = count_block_buf[offset2];
Merge(mean1, var1, count1, mean2, var2, count2);
mean_block_buf[offset1] = mean1;
var_block_buf[offset1] = var1;
count_block_buf[offset1] = count1;
}
block_sync_lds();
});
index_t offset = block_buf_desc_m_k.CalculateOffset(make_tuple(thread_m_cluster_id, 0));
count = count_block_buf[offset];
mean_value = mean_block_buf[offset];
if constexpr(GetActualVariance)
var_value = var_block_buf[offset] / count;
else
var_value = var_block_buf[offset];
};
};
} // namespace ck
......@@ -82,6 +82,78 @@ struct PartitionedBlockwiseReduction
};
};
// clang-format off
// Assume:
// 1) work_buffer is buffer (typically LDS) allocated outside as workspace, does not include any in/out data
// 2) work_buffer has AccDataType elements, and space size is no less than BlockSize
// 3) in_out_value is the input data in vgpr from each thread
// 4) in_out_value is the over-written reduced output in vgpr for each thread
// clang-format on
template <typename AccDataType,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterDesc,
typename OpReduce,
bool PropagateNan,
typename Accumulation =
detail::AccumulateWithNanCheck<PropagateNan, OpReduce, AccDataType>>
struct PartitionedBlockwiseReduction_v2
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
"The product of cluster lengths should be same as BlockSize!");
static constexpr auto BufferLength_M = ThreadClusterLengths_M_K::At(0);
static constexpr auto BufferLength_K = ThreadClusterLengths_M_K::At(1);
static_assert(BufferLength_K > 1, "Parallel reduction need work on at least two elements");
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<BufferLength_M>{}, Number<BufferLength_K>{}));
static constexpr auto thread_cluster_desc = ThreadClusterDesc{};
template <typename BufferType>
__device__ static void Reduce(BufferType& work_buffer, AccDataType& in_out_value)
{
static_assert(is_same<typename BufferType::type, AccDataType>{},
"Buffer data type should be consistent as AccDataType!");
constexpr auto cluster_len_shift = get_shift<BufferLength_K>();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[Number<0>{}];
const auto thread_k_cluster_id = thread_cluster_idx[Number<1>{}];
work_buffer(block_buf_desc_m_k.CalculateOffset(thread_cluster_idx)) = in_out_value;
__syncthreads();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << (cluster_len_shift - 1 - I());
if(thread_k_cluster_id < indOffset)
{
index_t offset1 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx);
index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx +
make_tuple(0, indOffset));
AccDataType opData1 = work_buffer[offset1];
AccDataType opData2 = work_buffer[offset2];
Accumulation::Calculate(opData1, opData2);
work_buffer(offset1) = opData1;
}
__syncthreads();
});
index_t offset = block_buf_desc_m_k.CalculateOffset(make_tuple(thread_m_cluster_id, 0));
in_out_value = work_buffer[offset];
};
};
// clang-format off
// Assume:
// 1) work_val_buffer/work_idx_buffer is buffer (typically LDS) allocated outside as workspace, does not include any in/out data
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_5ary_Elementwise_1d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ADataType,
typename BDataType,
typename CDataType,
typename DDataType,
typename EDataType,
typename FDataType,
typename ComputeDataType,
typename ElementwiseFunctor,
index_t NDim,
index_t MPerThread,
index_t AScalarPerVector,
index_t BScalarPerVector,
index_t CScalarPerVector,
index_t DScalarPerVector,
index_t EScalarPerVector,
index_t FScalarPerVector>
struct Device5AryElementwise : public DeviceElementwise<5, 1, NDim, ElementwiseFunctor>
{
static constexpr auto I0 = Number<0>{};
template <typename Desc_M>
static auto PadDescriptor_M_1d(Desc_M desc_m, index_t gridSize, index_t blockSize)
{
const auto m = desc_m.GetLength(I0);
const index_t loop_step = gridSize * blockSize * MPerThread;
const auto pad = math::integer_least_multiple(m, loop_step) - m;
const auto desc_m_pad =
transform_tensor_descriptor(desc_m,
make_tuple(make_right_pad_transform(m, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m_pad;
}
static auto MakeDescriptor_M(const std::vector<index_t>& lengths,
const std::vector<index_t>& stride,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return lengths[I]; }, Number<NDim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<NDim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(NDim > 1)
{
const auto desc_m = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<NDim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M_1d(desc_m, gridSize, blockSize);
}
else
return PadDescriptor_M_1d(desc, gridSize, blockSize);
}
using AGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using BGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using CGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using DGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using EGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using FGridDesc_M = decltype(MakeDescriptor_M({1, 1}, {1, 1}, 1, 1));
using Gridwise5AryEltwise = Gridwise5AryElementwise_1D<ADataType,
BDataType,
CDataType,
DDataType,
EDataType,
FDataType,
ComputeDataType,
AGridDesc_M,
BGridDesc_M,
CGridDesc_M,
DGridDesc_M,
EGridDesc_M,
FGridDesc_M,
ElementwiseFunctor,
MPerThread,
AScalarPerVector,
BScalarPerVector,
CScalarPerVector,
DScalarPerVector,
EScalarPerVector,
FScalarPerVector>;
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a,
const BDataType* p_b,
const CDataType* p_c,
const DDataType* p_d,
const EDataType* p_e,
FDataType* p_f,
const std::vector<index_t>& lengths,
const std::vector<index_t>& a_strides,
const std::vector<index_t>& b_strides,
const std::vector<index_t>& c_strides,
const std::vector<index_t>& d_strides,
const std::vector<index_t>& e_strides,
const std::vector<index_t>& f_strides,
ElementwiseFunctor functor)
: p_a_(p_a),
p_b_(p_b),
p_c_(p_c),
p_d_(p_d),
p_e_(p_e),
p_f_(p_f),
lengths_(lengths),
a_strides_(a_strides),
b_strides_(b_strides),
c_strides_(c_strides),
d_strides_(d_strides),
e_strides_(e_strides),
f_strides_(f_strides),
functor_(functor),
blockSize_(256),
gridSize_(120) // FIXME - Calculate the grid size by number of CU in the future
{
a_grid_desc_m_ = MakeDescriptor_M(lengths, a_strides, gridSize_, blockSize_);
b_grid_desc_m_ = MakeDescriptor_M(lengths, b_strides, gridSize_, blockSize_);
c_grid_desc_m_ = MakeDescriptor_M(lengths, c_strides, gridSize_, blockSize_);
d_grid_desc_m_ = MakeDescriptor_M(lengths, d_strides, gridSize_, blockSize_);
e_grid_desc_m_ = MakeDescriptor_M(lengths, e_strides, gridSize_, blockSize_);
f_grid_desc_m_ = MakeDescriptor_M(lengths, f_strides, gridSize_, blockSize_);
}
const ADataType* p_a_;
const BDataType* p_b_;
const CDataType* p_c_;
const DDataType* p_d_;
const EDataType* p_e_;
FDataType* p_f_;
std::vector<index_t> lengths_;
AGridDesc_M a_grid_desc_m_;
BGridDesc_M b_grid_desc_m_;
CGridDesc_M c_grid_desc_m_;
DGridDesc_M d_grid_desc_m_;
EGridDesc_M e_grid_desc_m_;
FGridDesc_M f_grid_desc_m_;
std::vector<index_t> a_strides_;
std::vector<index_t> b_strides_;
std::vector<index_t> c_strides_;
std::vector<index_t> d_strides_;
std::vector<index_t> e_strides_;
std::vector<index_t> f_strides_;
ElementwiseFunctor functor_;
index_t blockSize_;
index_t gridSize_;
};
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
const auto kernel = kernel_5ary_elementwise_1d<Gridwise5AryEltwise,
ADataType,
BDataType,
CDataType,
DDataType,
EDataType,
FDataType,
AGridDesc_M,
BGridDesc_M,
CGridDesc_M,
DGridDesc_M,
EGridDesc_M,
FGridDesc_M,
ElementwiseFunctor>;
float elapsed_time = launch_and_time_kernel(stream_config,
kernel,
dim3(arg.gridSize_),
dim3(arg.blockSize_),
0,
arg.p_a_,
arg.p_b_,
arg.p_c_,
arg.p_d_,
arg.p_e_,
arg.p_f_,
arg.a_grid_desc_m_,
arg.b_grid_desc_m_,
arg.c_grid_desc_m_,
arg.d_grid_desc_m_,
arg.e_grid_desc_m_,
arg.f_grid_desc_m_,
arg.functor_);
return elapsed_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
bool IsSupportedArgument(const BaseArgument& p_arg) { return IsSupportedArgument(&p_arg); }
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
const Argument* pArg = dynamic_cast<const Argument*>(p_arg);
if(pArg == nullptr)
return false;
if(pArg->lengths_.size() != NDim)
return false;
if(pArg->lengths_.back() % MPerThread != 0)
return false;
auto IsScalarPerVectorValid = [](bool isLastDimensionCoalesced, int scalarPerVector) {
bool ret = true;
if(!isLastDimensionCoalesced)
ret = scalarPerVector == 1;
else
ret = MPerThread % scalarPerVector == 0;
return ret;
};
if(!IsScalarPerVectorValid(pArg->a_strides_.back() == 1, AScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->b_strides_.back() == 1, BScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->c_strides_.back() == 1, CScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->d_strides_.back() == 1, DScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->e_strides_.back() == 1, EScalarPerVector))
return false;
if(!IsScalarPerVectorValid(pArg->f_strides_.back() == 1, FScalarPerVector))
return false;
return true;
};
static auto MakeArgument(std::array<const void*, 5> p_inputs,
std::array<void*, 1> p_outputs,
std::vector<index_t> lengths,
std::vector<index_t> a_strides,
std::vector<index_t> b_strides,
std::vector<index_t> c_strides,
std::vector<index_t> d_strides,
std::vector<index_t> e_strides,
std::vector<index_t> f_strides,
ElementwiseFunctor functor)
{
return Argument{static_cast<const ADataType*>(p_inputs[0]),
static_cast<const BDataType*>(p_inputs[1]),
static_cast<const CDataType*>(p_inputs[2]),
static_cast<const DDataType*>(p_inputs[3]),
static_cast<const EDataType*>(p_inputs[4]),
static_cast<FDataType*>(p_outputs[0]),
lengths,
a_strides,
b_strides,
c_strides,
d_strides,
e_strides,
f_strides,
functor};
}
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::array<const void*, 5> p_inputs,
std::array<void*, 1> p_outputs,
std::vector<index_t> lengths,
std::vector<std::vector<index_t>> input_strides,
std::vector<std::vector<index_t>> output_strides,
ElementwiseFunctor functor) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_inputs[0]),
static_cast<const BDataType*>(p_inputs[1]),
static_cast<const CDataType*>(p_inputs[2]),
static_cast<const DDataType*>(p_inputs[3]),
static_cast<const EDataType*>(p_inputs[4]),
static_cast<FDataType*>(p_outputs[0]),
lengths,
input_strides[0],
input_strides[1],
input_strides[2],
input_strides[3],
input_strides[4],
output_strides[0],
functor);
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>();
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "Device5aryElementwise"
<< "<"
<< "NDim = " << NDim
<< "MPerThread = " << MPerThread
<< "AScalarPerVector = " << AScalarPerVector
<< "BScalarPerVector = " << BScalarPerVector
<< "CScalarPerVector = " << CScalarPerVector
<< "DScalarPerVector = " << DScalarPerVector
<< "EScalarPerVector = " << EScalarPerVector
<< "FScalarPerVector = " << FScalarPerVector
<< ">";
// clang-format on
return str.str();
}
}; // namespace device
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment