Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1dbdab56
Commit
1dbdab56
authored
Aug 18, 2022
by
Jing Zhang
Browse files
merge develop
parents
d2e49b23
bac7df8f
Changes
192
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2058 additions
and
1437 deletions
+2058
-1437
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
+227
-0
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
...m_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
+254
-0
example/16_gemm_reduce/CMakeLists.txt
example/16_gemm_reduce/CMakeLists.txt
+0
-2
example/16_gemm_reduce/gemm_reduce_xdl_mean_squaremean_fp16.cpp
...e/16_gemm_reduce/gemm_reduce_xdl_mean_squaremean_fp16.cpp
+0
-314
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+8
-2
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+24
-32
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+32
-43
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+25
-35
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+31
-41
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
..._gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
+182
-209
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
+161
-174
example/24_batched_gemm_e_permute/batched_gemm_e_permute_xdl_fp16.cpp
...atched_gemm_e_permute/batched_gemm_e_permute_xdl_fp16.cpp
+258
-0
example/25_gemm_bias_e_permute/CMakeLists.txt
example/25_gemm_bias_e_permute/CMakeLists.txt
+2
-1
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
..._bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
+416
-0
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
..._bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
+417
-0
example/25_gemm_bias_e_permute/gemm_bias_e_permute_xdl_fp16.cpp
...e/25_gemm_bias_e_permute/gemm_bias_e_permute_xdl_fp16.cpp
+0
-284
example/27_layernorm/layernorm_blockwise.cpp
example/27_layernorm/layernorm_blockwise.cpp
+20
-19
example/28_grouped_gemm_bias/CMakeLists.txt
example/28_grouped_gemm_bias/CMakeLists.txt
+0
-1
example/28_grouped_gemm_bias/grouped_gemm_bias_xdl_fp16.cpp
example/28_grouped_gemm_bias/grouped_gemm_bias_xdl_fp16.cpp
+0
-280
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
+1
-0
No files found.
example/16_gemm_multi_d_multi_reduces/gemm_max_xdl_fp16.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
using
RsElementOp
=
ck
::
Tuple
<
PassThrough
>
;
// ReduceOp
using
RsThreadReduceOp
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
>
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{};
// Prepare GEMM, max
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
r0_device_buf
.
SetValue
(
ck
::
NumericLimits
<
R0DataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
RsThreadReduceOp
{}[
I0
];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
reduce0_op
(
reduce0_acc
,
e_val
);
};
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
}
bool
time_kernel
=
true
;
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/16_gemm_multi_d_multi_reduces/gemm_mean_meansquare_xdl_fp16.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDMultipleR_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| GemmAccData| CShuffle| DsData| EData| ReduceAccData| RsData| A| B| CDE| Qs| Rs| Thread| Global| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CDRThreadTransfer| CDE| RThreadTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths| ReduceThreadTransfer| DstScalarPerVector|
//######| | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _MPerBlock_NPerBlock| ScalarPerVector| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _NPerBlock| |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
QsElementOp
,
RsElementOp
,
RsThreadReduceOp
,
RsGlobalReduceOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
>
void
DumpPerf
(
float
ave_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
+
sizeof
(
R0DataType
)
*
M
+
sizeof
(
R1DataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
int
main
()
{
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
r0_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
r1_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_device_buf
(
sizeof
(
R0DataType
)
*
r0_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_device_buf
(
sizeof
(
R1DataType
)
*
r1_m
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM, mean, mean_square
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_device_buf
.
GetDeviceBuffer
(),
r1_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
// init reducetion buffer to 0
r0_device_buf
.
SetZero
();
r1_device_buf
.
SetZero
();
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
do_verification
=
true
;
bool
pass
=
true
;
if
(
do_verification
)
{
auto
I0
=
ck
::
Number
<
0
>
{};
auto
I1
=
ck
::
Number
<
1
>
{};
Tensor
<
EDataType
>
e_m_n_host
(
e_m_n
.
mDesc
);
Tensor
<
R0DataType
>
r0_m_host
(
r0_m
.
mDesc
);
Tensor
<
R1DataType
>
r1_m_host
(
r1_m
.
mDesc
);
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e_m_n_host
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
R0ThreadReduceOp
{};
auto
reduce1_op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
reduce1_acc
=
reduce1_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
square_e_val
;
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n_host
(
m
,
n
));
qs_element_op
[
I1
](
square_e_val
,
e_val
);
reduce0_op
(
reduce0_acc
,
e_val
);
reduce1_op
(
reduce1_acc
,
square_e_val
);
}
rs_element_op
[
I0
](
reduce0_acc
,
reduce0_acc
);
rs_element_op
[
I1
](
reduce1_acc
,
reduce1_acc
);
r0_m_host
(
m
)
=
ck
::
type_convert
<
R0DataType
>
(
reduce0_acc
);
r1_m_host
(
m
)
=
ck
::
type_convert
<
R1DataType
>
(
reduce1_acc
);
}
e_device_buf
.
FromDevice
(
e_m_n
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_m
.
mData
.
data
());
r1_device_buf
.
FromDevice
(
r1_m
.
mData
.
data
());
pass
=
ck
::
utils
::
check_err
(
e_m_n
.
mData
,
e_m_n_host
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r0_m
.
mData
,
r0_m_host
.
mData
,
"Error: Incorrect results d0"
,
1e-2
,
1e-2
);
pass
&=
ck
::
utils
::
check_err
(
r1_m
.
mData
,
r1_m_host
.
mData
,
"Error: Incorrect results d1"
,
1e-2
,
1e-2
);
}
bool
time_kernel
=
true
;
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
DumpPerf
<
ADataType
,
BDataType
,
EDataType
,
R0DataType
,
R1DataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/16_gemm_reduce/CMakeLists.txt
deleted
100644 → 0
View file @
d2e49b23
add_example_executable
(
example_gemm_reduce_xdl_max_fp16 gemm_reduce_xdl_max_fp16.cpp
)
add_example_executable
(
example_gemm_reduce_xdl_mean_squaremean_fp16 gemm_reduce_xdl_mean_squaremean_fp16.cpp
)
example/16_gemm_reduce/gemm_reduce_xdl_mean_squaremean_fp16.cpp
deleted
100644 → 0
View file @
d2e49b23
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F32
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*
,
ReduceDataType
*>
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceOp0
=
ck
::
reduce
::
Add
;
using
ReduceOp1
=
ck
::
reduce
::
Add
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceOp0
,
ReduceOp1
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
ReduceInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
ReduceOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
ReduceGlobalMemOps
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| ReduceDData| A| B| C| Reduce| ReduceInEleOp| ReduceOutEleOp| Reduce| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type Tuple| Elementwise| Elementwise| Elementwise| Operation| | | MemoryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | | | Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
ReduceOps
,
ReduceInElementOps
,
ReduceOutElementOps
,
ReduceGlobalMemOps
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ReduceDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
ReduceDataType
)
*
M
+
sizeof
(
ReduceDataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
std
::
cout
<<
"gemm + reduce_mean + reduce_mean_square Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce0_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
ReduceDataType
>
reduce1_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"reduce0_m: "
<<
reduce0_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"reduce1_m: "
<<
reduce1_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce0_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce0_m_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduce1_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce1_m_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
auto
passthrough
=
UnaryIdenticElementOp
{};
auto
square
=
UnarySquareElementOp
{};
auto
div
=
UnaryDivElementOp
{
N
};
std
::
array
<
void
*
,
2
>
reduce_in_element_ops
=
{
&
passthrough
,
&
square
};
std
::
array
<
void
*
,
2
>
reduce_out_element_ops
=
{
&
div
,
&
div
};
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduce0_device_buf
.
GetDeviceBuffer
(),
reduce1_device_buf
.
GetDeviceBuffer
()};
// do GEMM
auto
gemm
=
DeviceGemmReduceInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
nullptr
,
{},
c_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{},
gemm_element_ops
,
{},
reduce_in_element_ops
,
reduce_out_element_ops
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// init reducetion buffer to 0
reduce0_device_buf
.
SetZero
();
reduce1_device_buf
.
SetZero
();
// if time_kernel == true, kernel will run multiple times. This kernel use atomic-add so result
// will not be correct. need to set time_kernel = false for correctness test
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
reduce0_device_buf
.
FromDevice
(
reduce0_m_device_result
.
mData
.
data
());
reduce1_device_buf
.
FromDevice
(
reduce1_m_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce0_op
=
ReduceOp0
{};
auto
reduce1_op
=
ReduceOp1
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
reduce0_acc
=
reduce0_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
reduce1_acc
=
reduce1_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n_host_result
(
m
,
n
));
ReduceAccDataType
square_c_val
;
square
(
square_c_val
,
c_val
);
reduce0_op
(
reduce0_acc
,
c_val
);
reduce1_op
(
reduce1_acc
,
square_c_val
);
}
div
(
reduce0_acc
,
reduce0_acc
);
div
(
reduce1_acc
,
reduce1_acc
);
reduce0_m_host_result
(
m
)
=
ck
::
type_convert
<
ReduceDataType
>
(
reduce0_acc
);
reduce1_m_host_result
(
m
)
=
ck
::
type_convert
<
ReduceDataType
>
(
reduce1_acc
);
}
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
reduce0_m_device_result
.
mData
,
reduce0_m_host_result
.
mData
,
"Error: Incorrect results d0"
,
1e-4
,
1e-5
)
&&
ck
::
utils
::
check_err
(
reduce1_m_device_result
.
mData
,
reduce1_m_host_result
.
mData
,
"Error: Incorrect results d1"
,
1e-3
,
1e-5
);
}
if
(
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
true
});
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
ReduceDataType
>
(
ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
View file @
1dbdab56
...
...
@@ -66,8 +66,14 @@ using DeviceBatchedGemmReduceInstance = ck::tensor_operation::device::DeviceBatc
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
ReduceOps
,
ReduceInElementOps
,
ReduceOutElementOps
,
ReduceGlobalMemOps
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
ReduceAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
View file @
1dbdab56
...
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -18,26 +18,21 @@ using F32 = float;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
2
,
8
,
8
,
8
,
8
>
;
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
,
int
broadcastDim
>
void
host_broadcast2D
(
...
...
@@ -49,19 +44,19 @@ void host_broadcast2D(
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
Amn
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
,
n
)
)
;
ComputeDataT
ype
Cmn
=
0
;
auto
Amn
=
A
(
m
,
n
);
ct
ype
Cmn
=
0
;
if
constexpr
(
broadcastDim
==
0
)
{
ComputeDataType
Bn
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
n
)
)
;
auto
Bn
=
B
(
n
);
functor
(
Cmn
,
Amn
,
Bn
);
}
else
{
ComputeDataType
Bm
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
)
)
;
auto
Bm
=
B
(
m
);
functor
(
Cmn
,
Amn
,
Bm
);
}
C
(
m
,
n
)
=
ck
::
type_convert
<
ctype
>
(
Cmn
)
;
C
(
m
,
n
)
=
Cmn
;
}
}
}
...
...
@@ -103,18 +98,19 @@ int main()
b_n_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_n_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
=
{
Stride
,
1
};
std
::
vector
<
ck
::
index_t
>
b_strides
=
{
0
,
1
};
std
::
vector
<
ck
::
index_t
>
c_strides
=
{
Stride
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
abc_lengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
a_strides
=
{
Stride
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
b_strides
=
{
0
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
c_strides
=
{
Stride
,
1
};
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
{
M
,
N
}
,
{
a_strides
,
b_strides
},
{
c_strides
},
Add
{});
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -129,12 +125,8 @@ int main()
c_m_n_device_buf
.
FromDevice
(
c_m_n
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
host_broadcast2D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
,
0
>
(
host_c_m_n
,
a_m_n
,
b_n
,
M
,
N
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n
.
mData
,
host_c_m_n
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
View file @
1dbdab56
...
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -18,27 +18,19 @@ using F32 = float;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
3
,
8
,
1
,
8
,
8
>
;
ck
::
Sequence
<
1
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
...
...
@@ -51,11 +43,11 @@ void host_broadcast3D_am_bmnk(HostTensorC& C,
for
(
std
::
size_t
n
=
0
;
n
<
shape
[
1
];
++
n
)
for
(
std
::
size_t
k
=
0
;
k
<
shape
[
2
];
++
k
)
{
ComputeDataType
a_val
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
)
)
;
ComputeDataType
b_val
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
,
n
,
k
)
)
;
ComputeDataT
ype
c_val
=
0
;
auto
a_val
=
A
(
m
);
auto
b_val
=
B
(
m
,
n
,
k
);
ct
ype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
m
,
n
,
k
)
=
ck
::
type_convert
<
ctype
>
(
c_val
)
;
C
(
m
,
n
,
k
)
=
c_val
;
}
}
...
...
@@ -85,25 +77,25 @@ int main()
b_m_n_k_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_n_k_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
=
{
1
,
0
,
0
};
std
::
vector
<
ck
::
index_t
>
b_strides
{
b_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
b_m_n_k
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
c_strides
{
c_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
c_m_n_k
.
mDesc
.
GetStrides
().
end
()};
std
::
array
<
ck
::
index_t
,
3
>
abc_lengths
;
std
::
array
<
ck
::
index_t
,
3
>
a_strides
=
{
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
3
>
b_strides
;
std
::
array
<
ck
::
index_t
,
3
>
c_strides
;
std
::
copy
(
mnk
.
begin
(),
mnk
.
end
(),
abc_lengths
.
begin
());
std
::
copy
(
b_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
b_m_n_k
.
mDesc
.
GetStrides
().
end
(),
b_strides
.
begin
());
std
::
copy
(
c_m_n_k
.
mDesc
.
GetStrides
().
begin
(),
c_m_n_k
.
mDesc
.
GetStrides
().
end
(),
c_strides
.
begin
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
std
::
vector
<
ck
::
index_t
>
{
mnk
.
begin
(),
mnk
.
end
()},
{
a_strides
,
b_strides
},
{
c_strides
},
Add
{});
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -118,11 +110,8 @@ int main()
c_m_n_k_device_buf
.
FromDevice
(
c_m_n_k
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m_n_k
(
mnk
);
host_broadcast3D_am_bmnk
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m_n_k
,
a_m
,
b_m_n_k
,
mnk
,
Add
{});
host_broadcast3D_am_bmnk
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c_m_n_k
,
a_m
,
b_m_n_k
,
mnk
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m_n_k
.
mData
,
host_c_m_n_k
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/19_binary_elementwise/elementwise_add_1d.cpp
View file @
1dbdab56
...
...
@@ -5,7 +5,7 @@
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -17,27 +17,19 @@ using F32 = float;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
1
,
8
,
8
,
8
,
8
>
;
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise1D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
int
M
,
Functor
functor
)
{
...
...
@@ -45,11 +37,11 @@ void host_elementwise1D(
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ComputeDataType
Am
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
m
)
)
;
ComputeDataType
Bm
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
m
)
)
;
ComputeDataT
ype
Cm
=
0
;
auto
Am
=
A
(
m
);
auto
Bm
=
B
(
m
);
ct
ype
Cm
=
0
;
functor
(
Cm
,
Am
,
Bm
);
C
(
m
)
=
ck
::
type_convert
<
ctype
>
(
Cm
)
;
C
(
m
)
=
Cm
;
}
}
...
...
@@ -83,18 +75,19 @@ int main()
b_m_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_m_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
=
{
1
};
std
::
vector
<
ck
::
index_t
>
b_strides
=
{
1
};
std
::
vector
<
ck
::
index_t
>
c_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
abc_lengths
=
{
M
};
std
::
array
<
ck
::
index_t
,
1
>
a_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
b_strides
=
{
1
};
std
::
array
<
ck
::
index_t
,
1
>
c_strides
=
{
1
};
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
{
M
}
,
{
{
a_strides
}
,
b_strides
},
{
c_strides
},
Add
{});
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -109,11 +102,8 @@ int main()
c_m_device_buf
.
FromDevice
(
c_m
.
mData
.
data
());
Tensor
<
CDataType
>
host_c_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
host_elementwise1D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c_m
,
a_m
,
b_m
,
M
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c_m
.
mData
,
host_c_m
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
1dbdab56
...
...
@@ -6,7 +6,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_
binary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -18,27 +18,19 @@ using F32 = float;
using
ABDataType
=
F16
;
using
CDataType
=
F16
;
using
EltwiseComputeDataType
=
F32
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
DeviceElementwiseAddInstance
=
ck
::
tensor_operation
::
device
::
DeviceBinaryElementwise
<
ABDataType
,
ABDataType
,
CDataType
,
EltwiseComputeDataType
,
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ABDataType
,
ABDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
4
,
8
,
8
,
8
,
8
>
;
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
ComputeDataType
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
const
HostTensorA
&
A
,
const
HostTensorB
&
B
,
...
...
@@ -52,11 +44,11 @@ void host_elementwise4D(HostTensorC& C,
for
(
std
::
size_t
h
=
0
;
h
<
shape
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape
[
3
];
++
w
)
{
ComputeDataType
a_val
=
ck
::
type_convert
<
ComputeDataType
>
(
A
(
n
,
c
,
h
,
w
)
)
;
ComputeDataType
b_val
=
ck
::
type_convert
<
ComputeDataType
>
(
B
(
n
,
c
,
h
,
w
)
)
;
ComputeDataT
ype
c_val
=
0
;
auto
a_val
=
A
(
n
,
c
,
h
,
w
);
auto
b_val
=
B
(
n
,
c
,
h
,
w
);
ct
ype
c_val
=
0
;
functor
(
c_val
,
a_val
,
b_val
);
C
(
n
,
c
,
h
,
w
)
=
ck
::
type_convert
<
ctype
>
(
c_val
)
;
C
(
n
,
c
,
h
,
w
)
=
c_val
;
}
}
...
...
@@ -85,23 +77,24 @@ int main()
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
c_device_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
a_strides
{
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
b_strides
{
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
c_strides
{
c
.
mDesc
.
GetStrides
().
begin
(),
c
.
mDesc
.
GetStrides
().
end
()};
std
::
array
<
ck
::
index_t
,
4
>
abc_lengths
;
std
::
array
<
ck
::
index_t
,
4
>
a_strides
;
std
::
array
<
ck
::
index_t
,
4
>
b_strides
;
std
::
array
<
ck
::
index_t
,
4
>
c_strides
;
std
::
copy
(
nchw
.
begin
(),
nchw
.
end
(),
abc_lengths
.
begin
());
std
::
copy
(
a
.
mDesc
.
GetStrides
().
begin
(),
a
.
mDesc
.
GetStrides
().
end
(),
a_strides
.
begin
());
std
::
copy
(
b
.
mDesc
.
GetStrides
().
begin
(),
b
.
mDesc
.
GetStrides
().
end
(),
b_strides
.
begin
());
std
::
copy
(
c
.
mDesc
.
GetStrides
().
begin
(),
c
.
mDesc
.
GetStrides
().
end
(),
c_strides
.
begin
());
auto
broadcastAdd
=
DeviceElementwiseAddInstance
{};
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
input
,
output
,
std
::
vector
<
ck
::
index_t
>
{
nchw
.
begin
(),
nchw
.
end
()},
{{
a_strides
},
b_strides
},
{
c_strides
},
Add
{});
auto
argument
=
broadcastAdd
.
MakeArgumentPointer
(
abc_lengths
,
{
a_strides
,
b_strides
},
{
c_strides
},
input
,
output
,
Add
{});
if
(
!
broadcastAdd
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"DeviceBinaryElementwis
e instance, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devic
e instance, exiting!"
);
};
auto
broadcastAdd_invoker_ptr
=
broadcastAdd
.
MakeInvokerPointer
();
...
...
@@ -116,11 +109,8 @@ int main()
c_device_buf
.
FromDevice
(
c
.
mData
.
data
());
Tensor
<
CDataType
>
host_c
(
nchw
);
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
EltwiseComputeDataType
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
host_elementwise4D
<
Tensor
<
ABDataType
>
,
Tensor
<
ABDataType
>
,
Tensor
<
CDataType
>
,
Add
>
(
host_c
,
a
,
b
,
nchw
,
Add
{});
pass
&=
ck
::
utils
::
check_err
(
c
.
mData
,
host_c
.
mData
,
"Error: Incorrect results c"
,
1e-3
,
1e-3
);
...
...
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
View file @
1dbdab56
...
...
@@ -9,8 +9,8 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
bias_add_reduce
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_
5ary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d_multiple_r
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -28,57 +28,64 @@ using F32 = float;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
BiasDataType
=
F32
;
using
D0DataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F32
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*
,
ReduceDataType
*>
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
D0ElementOp
=
PassThrough
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSumOp
,
ReduceSumOp
>
;
using
CDEElementOp
=
AddReluAdd
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
ReduceInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
ReduceOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
using
ReduceGlobalMem
Op
s
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
R0GlobalReduce
Op
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
Device
GemmBiasAddReduce
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
BiasAddReduce
_Xdl_CShuffle
//######| ALayout| BLayout|
C
Layout|AData| BData|
CData|C0Data|C1Data|
GemmAcc
| CShuffle|
ReduceAcc|
Reduce
Data| A| B|
C|
C1
|
Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy
|
//######| | | | Type| Type|
Type|
Type|
Type|
DataType|
Data
Type|
Data
Type|
Type Tupl
e| Elementwise| Elementwise| Elementwise| Elementwise| Operation|
|
| Memo
ryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar|
Dst
Scalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar|
Dst
Scalar| ExtraN| MXdlPerWave| NXdlPerW
av
e| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
SrcDstScalarPerVector|
//######| | | |
|
|
|
|
|
|
| | |
Operation
| Operation| Operation| Operation|
| | |
Operation|
| Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
_MPerBlock|
//######| | | |
|
|
| |
|
|
|
|
|
| | |
| |
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
| | |
|
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
D0
ElementOp
,
R
educeOps
,
ReduceIn
ElementOp
s
,
R
educeOutElementOps
,
ReduceGlobalMem
Op
s
,
Gemm
Specialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
using
Device
Op
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
MultipleDMultipleR
_Xdl_CShuffle
//######| ALayout| BLayout|
E
Layout|
AData|
BData|
GemmAcc
Data| CShuffle| DsData| EData|
ReduceAcc
Data
|
Rs
Data| A| B| C
DE
|
Qs
|
Rs| Thread| Global|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CDRThreadTransfer| CDE| RThreadTransfer
|
//######| | | |
Type|
Type|
Type|
DataType|
Type|
Type|
Type| Type| Elementwis
e| Elementwise|
Elementwise| Elementwise| Elementwise|
Reduce
|
Reduce|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraN| MXdlPerWave| NXdlPerWave|
ClusterLengths| ReduceThreadTransfer|
DstScalarPerVector|
//######| | | |
|
|
|
|
| |
|
| Operation| Operation|
Operation|
Operation| Operation| Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_MPerBlock_NPerBlock| ScalarPerVector|
_MPerBlock|
//######| | | |
|
|
| |
| |
| | | |
|
|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
_NPerBlock|
|
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
C
DE
ElementOp
,
Qs
ElementOp
,
R
s
ElementOp
,
R
sThreadReduceOp
,
RsGlobalReduce
Op
,
Gemm
Default
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
C
DataType
,
E
DataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
...
...
@@ -87,23 +94,18 @@ using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataTyp
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
C
DataType
,
R
educe
DataType
,
R
educe
DataType
,
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
E
DataType
,
R
0
DataType
,
R
1
DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
NormalizeComputeDataType
,
BetaDataType
>
,
// x(gemm_out), mean, meansquare, gamma, beta
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
2
,
8
,
8
,
// scalarPerVector: gemm_out
1
,
// scalarPerVector: reduce_mean
1
,
// scalarPerVector: reduce_mean_square
8
,
// scalarPerVector: Gamma
8
,
// scalarPerVector: Beta
8
>
;
// scalarPerVector: LayerNorm_out
8
,
// MPerthread
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
...
...
@@ -124,41 +126,31 @@ auto f_host_tensor_descriptor2d =
}
};
template
<
typename
CDataType
,
typename
ReduceDataType
,
typename
AccDataType
,
typename
BiasDataType
,
typename
D0DataType
,
typename
A_functor
,
typename
B_functor
,
typename
C_functor
,
typename
C1_functor
>
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
A
DataType
>&
b_k_n
,
const
Tensor
<
Bias
DataType
>&
bias_n
,
const
Tensor
<
D
0
DataType
>&
c
1_m_n
,
const
Tensor
<
B
DataType
>&
b_k_n
,
const
Tensor
<
D0
DataType
>&
bias_n
,
const
Tensor
<
D
1
DataType
>&
d
1_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
GammaDataType
>&
beta_n
,
A_functor
a_element_op
,
B_functor
b_element_op
,
C_functor
c_element_op
,
C1_functor
c1_element_op
,
const
Tensor
<
BetaDataType
>&
beta_n
,
AElementOp
a_element_op
,
BElementOp
b_element_op
,
CDEElementOp
cde_element_op
,
int
M
,
int
N
)
{
int
Stride
C
=
N
;
Tensor
<
C
DataType
>
c
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
UnaryDivElementOp
{
N
};
int
Stride
E
=
N
;
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
Div
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c
_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e
_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
...
...
@@ -166,38 +158,32 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
acc
=
ck
::
type_convert
<
AccDataType
>
(
c_m_n
(
m
,
n
))
+
ck
::
type_convert
<
AccDataType
>
(
bias_n
(
n
));
AccDataType
c1
=
ck
::
type_convert
<
AccDataType
>
(
c1_m_n
(
m
,
n
));
c_element_op
(
acc
,
acc
);
c1_element_op
(
c1
,
c1
);
acc
+=
c1
;
c_m_n
(
m
,
n
)
=
ck
::
type_convert
<
CDataType
>
(
acc
);
auto
acc
=
ck
::
type_convert
<
GemmAccDataType
>
(
e_m_n
(
m
,
n
));
cde_element_op
(
e_m_n
(
m
,
n
),
acc
,
bias_n
(
n
),
d1_m_n
(
m
,
n
));
}
// reduce_mean and reduce_square_mean
auto
reduceSumOpInst
=
ReduceSumOp
{};
auto
r0Op
=
R0ThreadReduceOp
{};
auto
r1Op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
r
educeSumOpInst
.
GetIdentityValue
<
AccDataType
>
();
auto
square_
mean_
acc
=
r
educeSumOpInst
.
GetIdentityValue
<
AccDataType
>
();
auto
mean_acc
=
r
0Op
.
GetIdentityValue
<
Reduce
AccDataType
>
();
auto
mean_
square_acc
=
r
1Op
.
GetIdentityValue
<
Reduce
AccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
c_val
=
ck
::
type_convert
<
AccDataType
>
(
c
_m_n
(
m
,
n
));
AccDataType
square_
c
_val
=
0
;
Unary
Square
ElementOp
{}(
square_
c
_val
,
c
_val
);
auto
e_val
=
ck
::
type_convert
<
Reduce
AccDataType
>
(
e
_m_n
(
m
,
n
));
Reduce
AccDataType
square_
e
_val
=
0
;
Square
{}(
square_
e
_val
,
e
_val
);
r
educeSumOpInst
(
mean_acc
,
c
_val
);
r
educeSumOpInst
(
square_
mean_
acc
,
square_
c
_val
);
r
0Op
(
mean_acc
,
e
_val
);
r
1Op
(
mean_
square_acc
,
square_
e
_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
square_
mean_
acc
,
square_
mean_
acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
square_
mean_
acc
);
averageOpInst
(
mean_
square_acc
,
mean_
square_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
0
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
1
DataType
>
(
mean_
square_acc
);
}
// LayerNorm
...
...
@@ -206,24 +192,20 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
out_acc
=
0
;
layerNormInst
(
out_acc
,
ck
::
type_convert
<
AccDataType
>
(
c_m_n
(
m
,
n
)),
ck
::
type_convert
<
AccDataType
>
(
mean_m
(
m
)),
ck
::
type_convert
<
AccDataType
>
(
meanSquare_m
(
m
)),
ck
::
type_convert
<
AccDataType
>
(
gamma_n
(
n
)),
ck
::
type_convert
<
AccDataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
ck
::
type_convert
<
ReduceDataType
>
(
out_acc
);
LayerNormOutDataType
out_val
=
0
;
layerNormInst
(
out_val
,
e_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
out_m_n
(
m
,
n
)
=
out_val
;
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
BiasDataType
,
typename
EDataType
,
typename
D0DataType
,
typename
ReduceDataType
,
typename
D1DataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
...
...
@@ -231,12 +213,12 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
Bias
DataType
)
*
M
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
;
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
D0
DataType
)
*
M
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
;
std
::
size_t
normalize_num_byte
=
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
std
::
size_t
normalize_num_byte
=
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
...
...
@@ -259,37 +241,37 @@ int main()
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideC
=
1024
;
ck
::
index_t
StrideD0
=
1024
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c_m
_n
(
f_host_tensor_descriptor
2
d
(
M
,
N
,
StrideC
,
CLayout
{}
));
Tensor
<
Bias
DataType
>
bias
_n
(
f_host_tensor_descriptor
1
d
(
N
,
1
));
Tensor
<
D0
DataType
>
c1
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
r
educe
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
r
educe
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
D0
DataType
>
bias
_n
(
f_host_tensor_descriptor
1
d
(
N
,
1
));
Tensor
<
D1
DataType
>
d1_m
_n
(
f_host_tensor_descriptor
2
d
(
M
,
N
,
StrideD1
,
ELayout
{}
));
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
r
0_
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
r
1_
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
Bias
DataType
>
{
-
1
,
1
});
c
1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
0
DataType
>
{
-
5
,
5
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0
DataType
>
{
-
1
,
1
});
d
1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
1
DataType
>
{
-
5
,
5
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
c1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduceMean_device_buf
(
sizeof
(
ReduceDataType
)
*
reduceMean_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduceMeanSquare_device_buf
(
sizeof
(
ReduceDataType
)
*
reduceMeanSquare_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
D0DataType
)
*
bias_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_Mean_device_buf
(
sizeof
(
R0DataType
)
*
r0_Mean_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_MeanSquare_device_buf
(
sizeof
(
R1DataType
)
*
r1_MeanSquare_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
...
...
@@ -298,104 +280,94 @@ int main()
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
d
0
_device_buf
.
ToDevice
(
c
1_m_n
.
mData
.
data
());
d
1
_device_buf
.
ToDevice
(
d
1_m_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d_element_op
=
D0ElementOp
{};
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
auto
passthrough
=
UnaryIdenticElementOp
{};
auto
square
=
UnarySquareElementOp
{};
auto
div
=
UnaryDivElementOp
{
N
};
std
::
array
<
void
*
,
2
>
reduce_in_element_ops
=
{
&
passthrough
,
&
square
};
std
::
array
<
void
*
,
2
>
reduce_out_element_ops
=
{
&
div
,
&
div
};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduceMean_device_buf
.
GetDeviceBuffer
(),
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto
gemmReduce
=
DeviceGemmBiasAddReduceInstance
{};
// Prepare GEMM, mean, mean_square
auto
gemmReduce
=
DeviceOpInstance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
bias_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
()},
c_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
{
bias_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{
StrideD0
},
gemm_element_ops
,
{
&
d_element_op
},
reduce_in_element_ops
,
reduce_out_element_ops
);
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
reduceMean_device_buf
.
SetZero
();
reduceMeanSquare_device_buf
.
SetZero
();
// init reducetion buffer to 0
r0_Mean_device_buf
.
SetZero
();
r1_MeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
std
::
array
<
const
void
*
,
5
>
input
=
{
c
_device_buf
.
GetDeviceBuffer
(),
r
educe
Mean_device_buf
.
GetDeviceBuffer
(),
r
educe
MeanSquare_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
5
>
input
=
{
e
_device_buf
.
GetDeviceBuffer
(),
r
0_
Mean_device_buf
.
GetDeviceBuffer
(),
r
1_
MeanSquare_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideE
,
1
};
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument
=
normalize
.
MakeArgument
(
input
,
auto
normalize_argument_ptr
=
normalize
.
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{
xyStrides
},
input
,
output
,
{
M
,
N
},
{
StrideC
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
},
{
StrideC
,
1
},
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
_ptr
.
get
()
))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"Device5AryElementwise instan
ce, exiting!"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devi
ce, exiting!"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
host_gemm_layernorm
<
CDataType
,
ReduceDataType
,
ReduceAccDataType
>
(
host_layerNorm_m_n
,
host_gemm_layernorm
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
bias_n
,
c
1_m_n
,
d
1_m_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
c_element_op
,
d_element_op
,
cde_element_op
,
M
,
N
);
...
...
@@ -414,15 +386,16 @@ int main()
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
BiasDataType
,
EDataType
,
D0DataType
,
ReduceDataType
,
D1DataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
...
...
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
View file @
1dbdab56
...
...
@@ -9,8 +9,8 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
reduce
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_
5ary_
elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d_multiple_r
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
...
...
@@ -28,78 +28,83 @@ using F32 = float;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F32
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*
,
ReduceDataType
*>
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSumOp
,
ReduceSumOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
ReduceInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
ReduceOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
ReduceGlobalMemOps
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
Device
GemmReduce
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
Reduce
_Xdl_CShuffle
//######| ALayout| BLayout|
C
Layout|AData| BData|
CData|
GemmAcc
| CShuffle|
ReduceAcc|
Reduce
Data| A| B|
C|
Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy
|
//######| | | | Type| Type|
Type|
DataType|
Data
Type|
Data
Type|
Type Tupl
e| Elementwise| Elementwise| Elementwise|
Operation| |
|
MemoryData|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
ExtraN| MXdlPerWave| NXdlPerWave|
_MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| Src
DstScalarPerVector|
//######| | | |
| | |
|
| | | Operation| Operation| Operation|
| | |
Operation|
| Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
_MPerBlock|
//######| | | | |
|
|
|
| | |
| | |
|
|
| |
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
| | |
|
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
ReduceOps
,
ReduceIn
ElementOp
s
,
R
educeOut
ElementOp
s
,
R
educeGlobalMem
Op
s
,
Gemm
Specialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
using
Device
Op
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
MultipleDMultipleR
_Xdl_CShuffle
//######| ALayout| BLayout|
E
Layout|
AData|
BData|
GemmAcc
Data| CShuffle| DsData| EData|
ReduceAcc
Data
|
Rs
Data| A| B| C
DE
|
Qs| Rs| Thread| Global|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CDRThreadTransfer| CDE| RThreadTransfer
|
//######| | | |
Type|
Type|
Type|
DataType|
Type|
Type|
Type| Typ
e| Elementwise| Elementwise|
Elementwise|
Elementwise| Elementwise|
Reduce|
Reduce|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraN| MXdlPerWave| NXdlPerWave|
ClusterLengths| ReduceThreadTransfer|
DstScalarPerVector|
//######| | | |
| | |
|
| | |
|
Operation| Operation|
Operation|
Operation| Operation| Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_MPerBlock_NPerBlock| ScalarPerVector|
_MPerBlock|
//######| | | |
|
|
|
|
| | | | | |
| | |
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
_NPerBlock|
|
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
C
DE
ElementOp
,
Qs
ElementOp
,
R
s
ElementOp
,
R
sThreadReduceOp
,
RsGlobalReduce
Op
,
Gemm
Default
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
C
DataType
,
E
DataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
PassThrough
>
;
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
C
DataType
,
R
educe
DataType
,
R
educe
DataType
,
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
E
DataType
,
R
0
DataType
,
R
1
DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
NormalizeComputeDataType
,
BetaDataType
>
,
// x(gemm_out), mean,
// meansquare,
// gamma, beta
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
2
,
8
,
8
,
// scalarPerVector: gemm_out
1
,
// scalarPerVector: reduce_mean
1
,
// scalarPerVector: reduce_mean_square
8
,
// scalarPerVector: Gamma
8
,
// scalarPerVector: Beta
8
>
;
// scalarPerVector: LayerNorm_out
8
,
// MPerthread
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
...
...
@@ -120,60 +125,53 @@ auto f_host_tensor_descriptor2d =
}
};
template
<
typename
CDataType
,
typename
ReduceDataType
,
typename
A_functor
,
typename
B_functor
,
typename
C_functor
>
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
A
DataType
>&
b_k_n
,
const
Tensor
<
B
DataType
>&
b_k_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
BetaDataType
>&
beta_n
,
A
_functor
a_element_op
,
B
_functor
b_element_op
,
C
_functor
c_element_op
,
A
ElementOp
a_element_op
,
B
ElementOp
b_element_op
,
C
DEElementOp
c_element_op
,
int
M
,
int
N
)
{
using
out_type
=
ck
::
remove_reference_t
<
decltype
(
out_m_n
(
0
,
0
))
>
;
int
StrideC
=
N
;
Tensor
<
CDataType
>
c_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
ReduceDataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
UnaryDivElementOp
{
N
};
int
StrideE
=
N
;
Tensor
<
EDataType
>
e_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
R0DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R1DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
Div
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c
_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e
_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
// reduce_mean and reduce_square_mean
auto
reduceSumOpInst
=
ReduceSumOp
{};
auto
r0Op
=
R0ThreadReduceOp
{};
auto
r1Op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
r
educeSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
square_
mean_
acc
=
r
educeSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
mean_acc
=
r
0Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
mean_
square_acc
=
r
1Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n
(
m
,
n
));
auto
square_c_val
=
reduceSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
UnarySquareElementOp
{}(
square_c_val
,
c_val
);
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n
(
m
,
n
));
ReduceAccDataType
square_e_val
=
0
;
Square
{}(
square_e_val
,
e_val
);
r
educeSumOpInst
(
mean_acc
,
c
_val
);
r
educeSumOpInst
(
square_
mean_
acc
,
square_
c
_val
);
r
0Op
(
mean_acc
,
e
_val
);
r
1Op
(
mean_
square_acc
,
square_
e
_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
square_
mean_
acc
,
square_
mean_
acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
square_
mean_
acc
);
averageOpInst
(
mean_
square_acc
,
mean_
square_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
0
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
1
DataType
>
(
mean_
square_acc
);
}
// LayerNorm
...
...
@@ -182,22 +180,18 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
out_f32
=
0
;
layerNormInst
(
out_f32
,
static_cast
<
float
>
(
c_m_n
(
m
,
n
)),
static_cast
<
float
>
(
mean_m
(
m
)),
static_cast
<
float
>
(
meanSquare_m
(
m
)),
static_cast
<
float
>
(
gamma_n
(
n
)),
static_cast
<
float
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
static_cast
<
out_type
>
(
out_f32
);
LayerNormOutDataType
out_val
=
0
;
layerNormInst
(
out_val
,
e_m_n
(
m
,
n
),
mean_m
(
m
),
meanSquare_m
(
m
),
gamma_n
(
n
),
beta_n
(
n
));
out_m_n
(
m
,
n
)
=
out_val
;
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ReduceDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
...
...
@@ -205,11 +199,11 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
;
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
;
std
::
size_t
normalize_num_btye
=
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
std
::
size_t
normalize_num_btye
=
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
...
...
@@ -232,17 +226,17 @@ int main()
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
Stride
C
=
1024
;
ck
::
index_t
Stride
E
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
r
educe
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
r
educe
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
r
0_
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
r
1_
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
...
...
@@ -251,11 +245,10 @@ int main()
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduceMean_device_buf
(
sizeof
(
ReduceDataType
)
*
reduceMean_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
reduceMeanSquare_device_buf
(
sizeof
(
ReduceDataType
)
*
reduceMeanSquare_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r0_Mean_device_buf
(
sizeof
(
R0DataType
)
*
r0_Mean_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
r1_MeanSquare_device_buf
(
sizeof
(
R1DataType
)
*
r1_MeanSquare_m
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
...
...
@@ -268,38 +261,31 @@ int main()
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
auto
passthrough
=
UnaryIdenticElementOp
{};
auto
square
=
UnarySquareElementOp
{};
auto
div
=
UnaryDivElementOp
{
N
};
std
::
array
<
void
*
,
2
>
reduce_in_element_ops
=
{
&
passthrough
,
&
square
};
std
::
array
<
void
*
,
2
>
reduce_out_element_ops
=
{
&
div
,
&
div
};
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduceMean_device_buf
.
GetDeviceBuffer
(),
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()};
// Prepare GEMM, reduce_mean, reduce_mean_square
auto
gemmReduce
=
DeviceGemmReduceInstance
{};
// Prepare GEMM, mean, mean_square
auto
gemmReduce
=
DeviceOpInstance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
nullptr
,
{},
c
_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
e
_device_buf
.
GetDeviceBuffer
(),
{
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
()}
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{},
gemm_element_ops
,
{},
reduce_in_element_ops
,
reduce_out_element_ops
);
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
...
...
@@ -308,54 +294,54 @@ int main()
"not support this GEMM problem"
);
}
r
educe
Mean_device_buf
.
SetZero
();
r
educe
MeanSquare_device_buf
.
SetZero
();
r
0_
Mean_device_buf
.
SetZero
();
r
1_
MeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
std
::
array
<
const
void
*
,
5
>
input
=
{
c
_device_buf
.
GetDeviceBuffer
(),
r
educe
Mean_device_buf
.
GetDeviceBuffer
(),
r
educe
MeanSquare_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
5
>
input
=
{
e
_device_buf
.
GetDeviceBuffer
(),
r
0_
Mean_device_buf
.
GetDeviceBuffer
(),
r
1_
MeanSquare_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
2
>
xyLengths
=
{
M
,
N
};
std
::
array
<
ck
::
index_t
,
2
>
xyStrides
=
{
StrideE
,
1
};
auto
normalize
=
DeviceNormalizeInstance
{};
auto
normalize_invoker
=
normalize
.
MakeInvoker
();
auto
normalize_argument
=
normalize
.
MakeArgument
(
input
,
auto
normalize_argument_ptr
=
normalize
.
MakeArgumentPointer
(
xyLengths
,
{
xyStrides
,
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
}},
{
xyStrides
},
input
,
output
,
{
M
,
N
},
{
StrideC
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
},
{
StrideC
,
1
},
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
_ptr
.
get
()
))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the "
"Device5AryElementwise instan
ce, exiting
!
"
);
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the devi
ce, exiting"
);
}
// run kernel
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
false
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
false
});
bool
pass
=
true
;
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
host_gemm_layernorm
<
CDataType
,
ReduceDataType
>
(
host_layerNorm_m_n
,
host_gemm_layernorm
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
c
_element_op
,
cde
_element_op
,
M
,
N
);
...
...
@@ -374,13 +360,14 @@ int main()
float
gemm_reduce_mean_reduce_square_mean_ave_time
=
gemmReduce_invoker
.
Run
(
gemmReduce_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
normalize_ave_time
=
normalize_invoker
.
Run
(
normalize_argument
,
StreamConfig
{
nullptr
,
time_kernel
});
normalize_invoker
.
Run
(
normalize_argument
_ptr
.
get
()
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
ReduceDataType
,
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
...
...
example/24_batched_gemm_e_permute/batched_gemm_e_permute_xdl_fp16.cpp
0 → 100644
View file @
1dbdab56
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_e_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmEPermuteXdl
// clang-format off
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
const
int
M
=
256
;
const
int
N
=
128
;
const
int
K
=
64
;
const
int
stride_A
=
K
;
const
int
stride_B
=
K
;
const
int
batch_stride_A
=
M
*
K
;
const
int
batch_stride_B
=
K
*
N
;
const
int
G0
=
16
;
const
int
G1
=
8
;
const
int
batch_count
=
G0
*
G1
;
// output layout - [G0, M, G1, N]
const
int
stride_G0
=
M
*
G1
*
N
;
const
int
stride_G1
=
N
;
const
int
stride_M
=
G1
*
N
;
const
int
stride_N
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
// GEMM shape
ck
::
tensor_operation
::
device
::
BatchedGemmEPermuteDesc
batched_gemm_e_permute_desc
{
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
};
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count_
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count_
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
batch_count
,
M
,
K
,
stride_A
,
batch_stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
batch_count
,
K
,
N
,
stride_B
,
batch_stride_B
,
BLayout
{}));
auto
f_host_e_tensor_descriptor
=
[](
std
::
size_t
G0_
,
std
::
size_t
G1_
,
std
::
size_t
M_
,
std
::
size_t
N_
,
std
::
size_t
stride_G0_
,
std
::
size_t
stride_G1_
,
std
::
size_t
stride_M_
,
std
::
size_t
stride_N_
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
G0_
,
G1_
,
M_
,
N_
}),
std
::
vector
<
std
::
size_t
>
({
stride_G0_
,
stride_G1_
,
stride_M_
,
stride_N_
}));
};
Tensor
<
EDataType
>
e_g0_g1_m_n_host_result
(
f_host_e_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
Tensor
<
EDataType
>
e_g0_g1_m_n_device_result
(
f_host_e_tensor_descriptor
(
G0
,
G1
,
M
,
N
,
stride_G0
,
stride_G1
,
stride_M
,
stride_N
));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_g0_g1_m_n: "
<<
e_g0_g1_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_g0_g1_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEM
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
EDataType
*>
(
e_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
stride_A
,
stride_B
,
batch_stride_A
,
batch_stride_B
,
batched_gemm_e_permute_desc
,
batch_count
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
batch_count
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
batch_count
*
M
*
K
+
sizeof
(
BDataType
)
*
batch_count
*
K
*
N
+
sizeof
(
EDataType
)
*
batch_count
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
e_device_buf
.
FromDevice
(
e_g0_g1_m_n_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
Tensor
<
EDataType
>
c_g_m_n_host_result
=
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
M
,
N
}),
std
::
vector
<
std
::
size_t
>
({
M
*
N
,
N
,
1
}));
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
cde_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
g0
=
0
;
g0
<
G0
;
g0
++
)
{
for
(
int
g1
=
0
;
g1
<
G1
;
g1
++
)
{
for
(
int
m
=
0
;
m
<
M
;
m
++
)
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
int
g
=
g0
*
G1
+
g1
;
e_g0_g1_m_n_host_result
(
g0
,
g1
,
m
,
n
)
=
c_g_m_n_host_result
(
g
,
m
,
n
);
}
}
}
}
pass
=
ck
::
utils
::
check_err
(
e_g0_g1_m_n_host_result
.
mData
,
e_g0_g1_m_n_device_result
.
mData
,
"Error: Incorrect results c"
);
}
return
pass
?
0
:
1
;
}
example/25_gemm_bias_e_permute/CMakeLists.txt
View file @
1dbdab56
add_example_executable
(
example_gemm_bias_e_permute_xdl_fp16 gemm_bias_e_permute_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
)
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
1
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
3
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template
<
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
1
&&
NumDimM
==
2
&&
NumDimN
==
3
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G1_M2_N3_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G1_M2_N3_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_gs_ms_ns
=
[
&
](
auto
g0
,
auto
m0
,
auto
m1
,
auto
n0
,
auto
n1
,
auto
n2
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
3
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
m0
,
m1
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
n0
,
n1
,
n2
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_gs_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_M3_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
256
;
ck
::
index_t
N0
=
4
;
ck
::
index_t
N1
=
16
;
ck
::
index_t
N2
=
32
;
ck
::
index_t
K0
=
256
;
// A[M0, M1, M2, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
M0
,
M1
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M0
*
M1
*
K0
,
M1
*
K0
,
K0
,
1
};
// B[N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
N0
,
N1
,
N2
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
N0
*
N1
*
N2
*
K0
,
N1
*
N2
*
K0
,
N2
*
K0
,
K0
,
1
};
// D[N0, M0, N1, M1, N2]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
N0
,
N1
,
N2
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
N0
*
N1
*
N2
,
0
,
0
,
N1
*
N2
,
N2
,
1
};
// E[N0, M0, N1, M1, N2]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
N0
,
N1
,
N2
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
M0
*
M1
*
N0
*
N1
*
N2
,
N1
*
M1
*
N2
,
N2
,
M0
*
N1
*
M1
*
N2
,
M1
*
N2
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimG
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G1_M2_N3_K1
<
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_gs_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
g0
=
0
;
g0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
g0
)
{
for
(
size_t
m0
=
0
;
m0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
4
];
++
n1
)
{
for
(
size_t
n2
=
0
;
n2
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
5
];
++
n2
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
),
c_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
),
d_gs_ms_ns
(
g0
,
m0
,
m1
,
n0
,
n1
,
n2
));
}
}
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/25_gemm_bias_e_permute/gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp
0 → 100644
View file @
1dbdab56
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimG
=
1
;
static
constexpr
ck
::
index_t
NumDimM
=
3
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
ABSpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Packed
;
static
constexpr
auto
DESpec
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstanceKKNN
=
ck
::
tensor_operation
::
device
::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
F16
,
F16
,
F32
,
F16
,
DsDataType
,
F16
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
ABSpec
,
ABSpec
,
DESpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
DeviceOpInstance
=
DeviceOpInstanceKKNN
;
template
<
ck
::
index_t
NumDimG
,
ck
::
index_t
NumDimM
,
ck
::
index_t
NumDimN
,
ck
::
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ck
::
enable_if_t
<
NumDimG
==
1
&&
NumDimM
==
3
&&
NumDimN
==
2
&&
NumDimK
==
1
,
bool
>
=
false
>
struct
ReferenceContraction_G1_M3_N2_K1
:
public
ck
::
tensor_operation
::
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
ck
::
tensor_operation
::
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
a_gs_ms_ks_
{
a_gs_ms_ks
},
b_gs_ns_ks_
{
b_gs_ns_ks
},
e_gs_ms_ns_
{
e_gs_ms_ns
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
}
const
Tensor
<
ADataType
>&
a_gs_ms_ks_
;
const
Tensor
<
BDataType
>&
b_gs_ns_ks_
;
Tensor
<
EDataType
>&
e_gs_ms_ns_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
ck
::
tensor_operation
::
device
::
BaseInvoker
{
using
Argument
=
ReferenceContraction_G1_M3_N2_K1
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
auto
f_gs_ms_ns
=
[
&
](
auto
g0
,
auto
m0
,
auto
m1
,
auto
m2
,
auto
n0
,
auto
n1
)
{
const
int
K0
=
arg
.
a_gs_ms_ks_
.
mDesc
.
GetLengths
()[
4
];
AccDataType
v_acc
=
0
;
for
(
int
k0
=
0
;
k0
<
K0
;
++
k0
)
{
AccDataType
v_a
;
AccDataType
v_b
;
arg
.
a_element_op_
(
v_a
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
a_gs_ms_ks_
(
g0
,
m0
,
m1
,
m2
,
k0
)));
arg
.
b_element_op_
(
v_b
,
ck
::
type_convert
<
const
AccDataType
>
(
arg
.
b_gs_ns_ks_
(
g0
,
n0
,
n1
,
k0
)));
v_acc
+=
v_a
*
v_b
;
}
AccDataType
v_c
;
arg
.
cde_element_op_
(
v_c
,
v_acc
);
arg
.
e_gs_ms_ns_
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
)
=
v_c
;
};
make_ParallelTensorFunctor
(
f_gs_ms_ns
,
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
0
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
1
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
2
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
3
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
4
],
arg
.
e_gs_ms_ns_
.
mDesc
.
GetLengths
()[
5
])(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
float
Run
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
ck
::
tensor_operation
::
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_gs_ms_ks
,
const
Tensor
<
BDataType
>&
b_gs_ns_ks
,
Tensor
<
EDataType
>&
e_gs_ms_ns
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
a_gs_ms_ks
,
b_gs_ns_ks
,
e_gs_ms_ns
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceContraction_G1_M3_N2_K1"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
index_t
G0
=
1
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
8
;
ck
::
index_t
M2
=
256
;
ck
::
index_t
N0
=
32
;
ck
::
index_t
N1
=
128
;
ck
::
index_t
K0
=
1024
;
// A[M0, M1, M2, K0]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
M0
,
M1
,
M2
,
K0
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M0
*
M1
*
M2
*
K0
,
M1
*
M2
*
K0
,
M2
*
K0
,
K0
,
1
};
// B[N0, N1, K0]
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_lengths
{
G0
,
N0
,
N1
,
K0
};
std
::
vector
<
ck
::
index_t
>
b_gs_ns_ks_strides
{
N0
*
N1
*
K0
,
N1
*
K0
,
K0
,
1
};
// D[M0, N0, M1, N1, M2]
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
M2
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_ns_strides
{
N0
*
N1
,
0
,
0
,
0
,
N1
,
1
};
// E[M1, M0, N0, M1, N1]
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_lengths
{
G0
,
M0
,
M1
,
M2
,
N0
,
N1
};
std
::
vector
<
ck
::
index_t
>
e_gs_ms_ns_strides
{
M0
*
M1
*
M2
*
N1
*
N0
,
N0
*
M1
*
N1
,
N1
,
M0
*
N0
*
M1
*
N1
,
M1
*
N1
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
ADataType
>
a_gs_ms_ks
(
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_lengths
.
begin
(),
a_gs_ms_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
a_gs_ms_ks_strides
.
begin
(),
a_gs_ms_ks_strides
.
end
()));
Tensor
<
BDataType
>
b_gs_ns_ks
(
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_lengths
.
begin
(),
b_gs_ns_ks_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
b_gs_ns_ks_strides
.
begin
(),
b_gs_ns_ks_strides
.
end
()));
Tensor
<
DDataType
>
d_gs_ms_ns
(
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_lengths
.
begin
(),
d_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
d_gs_ms_ns_strides
.
begin
(),
d_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
Tensor
<
EDataType
>
e_gs_ms_ns_device_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_gs_ns_ks: "
<<
b_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_ns: "
<<
d_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_gs_ms_ns: "
<<
e_gs_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_gs_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_gs_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_gs_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_gs_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_gs_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_gs_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// device operation
auto
op
=
DeviceOpInstance
{};
auto
invoker
=
op
.
MakeInvoker
();
auto
argument
=
op
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_gs_ms_ns_strides
},
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
op
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
M
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
N
=
std
::
accumulate
(
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
,
e_gs_ms_ns_lengths
.
begin
()
+
NumDimM
+
NumDimN
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
ck
::
index_t
K
=
std
::
accumulate
(
a_gs_ms_ks_lengths
.
begin
()
+
NumDimM
,
a_gs_ms_ks_lengths
.
begin
()
+
NumDimM
+
NumDimK
,
ck
::
index_t
{
1
},
std
::
multiplies
<
ck
::
index_t
>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
M
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_gs_ms_ns_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_gs_ms_ns_host_result
(
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_lengths
.
begin
(),
e_gs_ms_ns_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
e_gs_ms_ns_strides
.
begin
(),
e_gs_ms_ns_strides
.
end
()));
using
ReferenceOpInstance
=
ReferenceContraction_G1_M3_N2_K1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_gs_ms_ks
,
b_gs_ns_ks
,
c_gs_ms_ns_host_result
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
g0
=
0
;
g0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
g0
)
{
for
(
size_t
m0
=
0
;
m0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
m1
)
{
for
(
size_t
m2
=
0
;
m2
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
m2
)
{
for
(
size_t
n0
=
0
;
n0
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
4
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_gs_ms_ns_host_result
.
mDesc
.
GetLengths
()[
5
];
++
n1
)
{
cde_element_op
(
e_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
),
c_gs_ms_ns_host_result
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
),
d_gs_ms_ns
(
g0
,
m0
,
m1
,
m2
,
n0
,
n1
));
}
}
}
}
}
}
return
ck
::
utils
::
check_err
(
e_gs_ms_ns_device_result
.
mData
,
e_gs_ms_ns_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/25_gemm_bias_e_permute/gemm_bias_e_permute_xdl_fp16.cpp
deleted
100644 → 0
View file @
d2e49b23
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_e_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmBiasEPermute_Xdl
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
index_t
M0
=
4
;
ck
::
index_t
M1
=
32
;
ck
::
index_t
M2
=
128
;
ck
::
index_t
N0
=
16
;
ck
::
index_t
N1
=
256
;
// GEMM shape
ck
::
index_t
M
=
M0
*
M1
*
M2
;
ck
::
index_t
N
=
N0
*
N1
;
ck
::
index_t
K
=
128
;
ck
::
index_t
stride_A
=
K
;
ck
::
index_t
stride_B
=
K
;
#if 1
// E = [M0, N0, M1, N1, M2]
ck
::
index_t
stride_E_M0
=
N0
*
M1
*
N1
*
M2
;
ck
::
index_t
stride_E_M1
=
N1
*
M2
;
ck
::
index_t
stride_E_M2
=
1
;
ck
::
index_t
stride_E_N0
=
M1
*
N1
*
M2
;
ck
::
index_t
stride_E_N1
=
M2
;
// D = [0, N0, 0, N1, 0]
ck
::
index_t
stride_D_M0
=
0
;
ck
::
index_t
stride_D_M1
=
0
;
ck
::
index_t
stride_D_M2
=
0
;
ck
::
index_t
stride_D_N0
=
N1
;
ck
::
index_t
stride_D_N1
=
1
;
#else
// D = [0, 0, 0, N0, N1]
ck
::
index_t
stride_D_M0
=
0
;
ck
::
index_t
stride_D_M1
=
0
;
ck
::
index_t
stride_D_M2
=
0
;
ck
::
index_t
stride_D_N0
=
N1
;
ck
::
index_t
stride_D_N1
=
1
;
// E = [M0, M1, M2, N0, N1]
ck
::
index_t
stride_E_M0
=
M1
*
M2
*
N0
*
N1
;
ck
::
index_t
stride_E_M1
=
M2
*
N0
*
N1
;
ck
::
index_t
stride_E_M2
=
N0
*
N1
;
ck
::
index_t
stride_E_N0
=
N1
;
ck
::
index_t
stride_E_N1
=
1
;
#endif
const
ck
::
tensor_operation
::
device
::
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
{
M0
,
M1
,
M2
,
N0
,
N1
,
stride_D_M0
,
stride_D_M1
,
stride_D_M2
,
stride_D_N0
,
stride_D_N1
};
const
ck
::
tensor_operation
::
device
::
DEGridDesc_M0_M1_M2_N0_N1
e_grid_desc
{
M0
,
M1
,
M2
,
N0
,
N1
,
stride_E_M0
,
stride_E_M1
,
stride_E_M2
,
stride_E_N0
,
stride_E_N1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
auto
f_host_de_tensor_descriptor
=
[](
ck
::
tensor_operation
::
device
::
DEGridDesc_M0_M1_M2_N0_N1
de_grid_desc
)
{
std
::
size_t
m0
=
de_grid_desc
.
M0_
;
std
::
size_t
m1
=
de_grid_desc
.
M1_
;
std
::
size_t
m2
=
de_grid_desc
.
M2_
;
std
::
size_t
n0
=
de_grid_desc
.
N0_
;
std
::
size_t
n1
=
de_grid_desc
.
N1_
;
std
::
size_t
stride_m0
=
de_grid_desc
.
stride_M0_
;
std
::
size_t
stride_m1
=
de_grid_desc
.
stride_M1_
;
std
::
size_t
stride_m2
=
de_grid_desc
.
stride_M2_
;
std
::
size_t
stride_n0
=
de_grid_desc
.
stride_N0_
;
std
::
size_t
stride_n1
=
de_grid_desc
.
stride_N1_
;
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
m0
,
m1
,
m2
,
n0
,
n1
}),
std
::
vector
<
std
::
size_t
>
({
stride_m0
,
stride_m1
,
stride_m2
,
stride_n0
,
stride_n1
}));
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
stride_A
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
stride_B
,
BLayout
{}));
Tensor
<
DDataType
>
d_m0_m1_m2_n0_n1
(
f_host_de_tensor_descriptor
(
d_grid_desc
));
Tensor
<
EDataType
>
e_m0_m1_m2_n0_n1_host_result
(
f_host_de_tensor_descriptor
(
e_grid_desc
));
Tensor
<
EDataType
>
e_m0_m1_m2_n0_n1_device_result
(
f_host_de_tensor_descriptor
(
e_grid_desc
));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m0_m1_m2_n0_n1: "
<<
d_m0_m1_m2_n0_n1
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m0_m1_m2_n0_n1: "
<<
e_m0_m1_m2_n0_n1_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m0_m1_m2_n0_n1
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m0_m1_m2_n0_n1
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
0.0
,
1.0
});
}
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_m0_m1_m2_n0_n1_device_buf
(
sizeof
(
DDataType
)
*
d_m0_m1_m2_n0_n1
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_m0_m1_m2_n0_n1_device_buf
(
sizeof
(
EDataType
)
*
e_m0_m1_m2_n0_n1_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_m0_m1_m2_n0_n1_device_buf
.
ToDevice
(
d_m0_m1_m2_n0_n1
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
a_m_k_device_buf
.
GetDeviceBuffer
(),
b_k_n_device_buf
.
GetDeviceBuffer
(),
d_m0_m1_m2_n0_n1_device_buf
.
GetDeviceBuffer
(),
e_m0_m1_m2_n0_n1_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
stride_A
,
stride_B
,
d_grid_desc
,
e_grid_desc
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
DDataType
)
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
device_op
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m0
=
0
;
m0
<
M0
;
++
m0
)
for
(
int
m1
=
0
;
m1
<
M1
;
++
m1
)
for
(
int
m2
=
0
;
m2
<
M2
;
++
m2
)
for
(
int
n0
=
0
;
n0
<
N0
;
++
n0
)
for
(
int
n1
=
0
;
n1
<
N1
;
++
n1
)
{
int
m
=
m0
*
M1
*
M2
+
m1
*
M2
+
m2
;
int
n
=
n0
*
N1
+
n1
;
cde_element_op
(
e_m0_m1_m2_n0_n1_host_result
(
m0
,
m1
,
m2
,
n0
,
n1
),
ck
::
type_convert
<
EDataType
>
(
c_m_n
(
m
,
n
)),
d_m0_m1_m2_n0_n1
(
m0
,
m1
,
m2
,
n0
,
n1
));
}
e_m0_m1_m2_n0_n1_device_buf
.
FromDevice
(
e_m0_m1_m2_n0_n1_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m0_m1_m2_n0_n1_device_result
.
mData
,
e_m0_m1_m2_n0_n1_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/27_layernorm/layernorm_blockwise.cpp
View file @
1dbdab56
...
...
@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm
_impl
.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -29,7 +29,7 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceLayernorm
<
XDataType
,
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceLayernorm
Impl
<
XDataType
,
GammaDataType
,
BetaDataType
,
AccDataType
,
...
...
@@ -46,7 +46,7 @@ using DeviceInstance = ck::tensor_operation::device::DeviceLayernorm<XDataType,
8
,
// SrcScalarPerVector
8
,
// GammaScalarPerVector
8
,
// BetaScalarPerVector
1
>
;
// OutScalarPerVector
8
>
;
// OutScalarPerVector
int
main
()
{
...
...
@@ -90,6 +90,7 @@ int main()
std
::
vector
<
ck
::
index_t
>
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
gamma
.
mDesc
.
GetStrides
().
begin
(),
gamma
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
beta
.
mDesc
.
GetStrides
().
begin
(),
beta
.
mDesc
.
GetStrides
().
end
()},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
().
begin
(),
y
.
mDesc
.
GetStrides
().
end
()},
{
1
},
1e-4
,
x_dev
.
GetDeviceBuffer
(),
...
...
example/28_grouped_gemm_bias/CMakeLists.txt
deleted
100644 → 0
View file @
d2e49b23
add_example_executable
(
example_grouped_gemm_bias_xdl_fp16 grouped_gemm_bias_xdl_fp16.cpp
)
example/28_grouped_gemm_bias/grouped_gemm_bias_xdl_fp16.cpp
deleted
100644 → 0
View file @
d2e49b23
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
DDataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
DDataType
>
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
DLayout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
exit
(
0
);
}
int
group_count
=
rand
()
%
16
+
1
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
std
::
vector
<
const
void
*>
p_a
,
p_b
;
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_ds
;
std
::
vector
<
void
*>
p_c
;
gemm_descs
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
256
+
256
*
i
;
int
N
=
128
+
128
*
i
;
int
K
=
64
+
64
*
i
;
int
stride_A
=
K
;
int
stride_B
=
K
;
int
stride_C
=
N
;
std
::
vector
<
ck
::
index_t
>
stride_Ds
=
{
0
};
gemm_descs
.
push_back
({
M
,
N
,
K
,
stride_A
,
stride_B
,
stride_C
,
stride_Ds
});
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
std
::
vector
<
Tensor
<
ADataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
BDataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
DDataType
>>
d_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d_tensors
.
reserve
(
group_count
);
e_host_tensors
.
reserve
(
group_count
);
e_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
d_tensors_device
,
e_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d_tensors_device
.
reserve
(
group_count
);
e_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors
.
push_back
(
Tensor
<
ADataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
stride_A_
,
ALayout
{})));
b_tensors
.
push_back
(
Tensor
<
BDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
K_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_B_
,
BLayout
{})));
d_tensors
.
push_back
(
Tensor
<
DDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_Ds_
[
0
],
ELayout
{})));
e_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
e_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
gemm_descs
[
i
].
M_
,
gemm_descs
[
i
].
N_
,
gemm_descs
[
i
].
stride_C_
,
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
e_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
gemm_descs
[
i
].
M_
*
gemm_descs
[
i
].
K_
*
gemm_descs
[
i
].
N_
;
num_btype
+=
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
d_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
}
}
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ADataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
BDataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
d_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
DDataType
)
*
d_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
e_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
());
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
());
d_tensors_device
[
i
]
->
ToDevice
(
d_tensors
[
i
].
mData
.
data
());
p_a
.
push_back
(
a_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_b
.
push_back
(
b_tensors_device
[
i
]
->
GetDeviceBuffer
());
p_ds
.
push_back
({
d_tensors_device
[
i
]
->
GetDeviceBuffer
()});
p_c
.
push_back
(
e_tensors_device
[
i
]
->
GetDeviceBuffer
());
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_a
,
p_b
,
p_ds
,
p_c
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
DeviceMem
gemm_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
e_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
());
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
e_host_tensors
[
i
],
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
gemm_descs
[
i
].
M_
;
++
m
)
{
for
(
int
n
=
0
;
n
<
gemm_descs
[
i
].
N_
;
++
n
)
{
cde_element_op
(
e_host_tensors
[
i
](
m
,
n
),
e_host_tensors
[
i
](
m
,
n
),
d_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
].
mData
,
e_host_tensors
[
i
].
mData
);
}
}
return
pass
?
0
:
1
;
}
example/28_grouped_gemm_bias_e_permute/CMakeLists.txt
0 → 100644
View file @
1dbdab56
add_example_executable
(
example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp
)
Prev
1
2
3
4
5
6
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment