Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1abaedd9
Commit
1abaedd9
authored
Feb 16, 2023
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/develop' into gpu-invoker
parents
bd2b3dd7
cb3fac4d
Changes
1000
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2281 additions
and
2 deletions
+2281
-2
client_example/07_conv2d_fwd/CMakeLists.txt
client_example/07_conv2d_fwd/CMakeLists.txt
+0
-2
client_example/07_grouped_conv2d_fwd/CMakeLists.txt
client_example/07_grouped_conv2d_fwd/CMakeLists.txt
+2
-0
client_example/07_grouped_conv2d_fwd/grouped_conv2d_fwd.cpp
client_example/07_grouped_conv2d_fwd/grouped_conv2d_fwd.cpp
+226
-0
client_example/08_fused_attention/CMakeLists.txt
client_example/08_fused_attention/CMakeLists.txt
+5
-0
client_example/08_fused_attention/fused_attention.cpp
client_example/08_fused_attention/fused_attention.cpp
+213
-0
client_example/08_fused_attention/fused_attention_bias.cpp
client_example/08_fused_attention/fused_attention_bias.cpp
+226
-0
client_example/09_quantization/CMakeLists.txt
client_example/09_quantization/CMakeLists.txt
+11
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
+205
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
+198
-0
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
...le/09_quantization/conv2d_fwd_perchannel_quantization.cpp
+198
-0
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
...mple/09_quantization/conv2d_fwd_perlayer_quantization.cpp
+192
-0
client_example/10_grouped_conv2d_bwd_data/CMakeLists.txt
client_example/10_grouped_conv2d_bwd_data/CMakeLists.txt
+2
-0
client_example/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp
...le/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp
+226
-0
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
+7
-0
client_example/11_grouped_conv_bwd_weight/common.hpp
client_example/11_grouped_conv_bwd_weight/common.hpp
+246
-0
client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp
...rouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp
+41
-0
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp
...rouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp
+53
-0
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp
...rouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp
+53
-0
client_example/12_elementwise_normalization/CMakeLists.txt
client_example/12_elementwise_normalization/CMakeLists.txt
+2
-0
client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp
.../12_elementwise_normalization/elementwise_layernorm2d.cpp
+175
-0
No files found.
Too many changes to show.
To preserve performance only
1000 of 1000+
files are displayed.
Plain diff
Email patch
client_example/07_conv2d_fwd/CMakeLists.txt
deleted
100644 → 0
View file @
bd2b3dd7
add_executable
(
client_conv2d_fwd conv2d_fwd.cpp
)
target_link_libraries
(
client_conv2d_fwd PRIVATE composable_kernel::device_operations
)
client_example/07_grouped_conv2d_fwd/CMakeLists.txt
0 → 100644
View file @
1abaedd9
add_executable
(
client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp
)
target_link_libraries
(
client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations
)
client_example/07_grouped_conv2d_fwd/grouped_conv2d_fwd.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
Hi
,
Wi
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
0
,
0
,
0
,
0
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
Y
,
X
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
0
,
0
,
0
,
0
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
Ho
,
Wo
,
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
0
,
0
,
0
,
0
,
1
};
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose GNHWC/GKYXC/GNHWK to GNCHW/GKCYX/GNCHW
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
3
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
3
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
3
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
3
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
3
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
3
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
client_example/08_fused_attention/CMakeLists.txt
0 → 100644
View file @
1abaedd9
add_executable
(
client_fused_attention fused_attention.cpp
)
target_link_libraries
(
client_fused_attention PRIVATE composable_kernel::device_operations
)
add_executable
(
client_fused_attention_bias fused_attention_bias.cpp
)
target_link_libraries
(
client_fused_attention_bias PRIVATE composable_kernel::device_operations
)
client_example/08_fused_attention/fused_attention.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
using
ADataType
=
ck
::
half_t
;
using
B0DataType
=
ck
::
half_t
;
using
B1DataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
int
G0
=
48
;
int
G1
=
16
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
SimpleDeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<>
,
ck
::
Tuple
<>
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
MaskingSpec
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
{},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
{},
// acc0_biases_gs_ms_ns_lengths
{},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
G0
*
G1
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
G0
*
G1
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
{},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
{},
// acc0_biases_gs_ms_ns_lengths
{},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/08_fused_attention/fused_attention_bias.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
using
ADataType
=
ck
::
half_t
;
using
B0DataType
=
ck
::
half_t
;
using
B1DataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
D0DataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
int
G0
=
48
;
int
G1
=
16
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
// D layout [G0, M, G1, N]
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_strides
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
G0
*
G1
*
M
*
N
);
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
SimpleDeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<
D0DataType
>
,
ck
::
Tuple
<>
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
MaskingSpec
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
G0
*
G1
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
+
sizeof
(
D0DataType
)
*
M
*
N
)
*
G0
*
G1
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/09_quantization/CMakeLists.txt
0 → 100644
View file @
1abaedd9
add_executable
(
client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_perchannel_quantization conv2d_fwd_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
},
{
bias_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
requant_scale_lengths
},
{
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
0.5
f
,
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/10_grouped_conv2d_bwd_data/CMakeLists.txt
0 → 100644
View file @
1abaedd9
add_executable
(
client_grouped_conv2d_bwd_data grouped_conv2d_bwd_data.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_data PRIVATE composable_kernel::device_operations
)
client_example/10_grouped_conv2d_bwd_data/grouped_conv2d_bwd_data.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
Hi
,
Wi
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
0
,
0
,
0
,
0
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
Y
,
X
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
0
,
0
,
0
,
0
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
Ho
,
Wo
,
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
0
,
0
,
0
,
0
,
1
};
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose GNHWC/GKYXC/GNHWK to GNCHW/GKCYX/GNCHW
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
3
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
3
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
3
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
3
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
3
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
3
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
0 → 100644
View file @
1abaedd9
add_executable
(
client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations
)
client_example/11_grouped_conv_bwd_weight/common.hpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetFlops
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return
static_cast
<
std
::
size_t
>
(
2
)
*
G
*
N
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetInputByte
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_spatial_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
(
G
*
N
*
C
*
std
::
accumulate
(
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetWeightByte
(
ck
::
index_t
G
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
(
G
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetOutputByte
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
(
G
*
N
*
K
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()));
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
bool
run_grouped_conv_bwd_weight
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_right_pads
)
{
ck
::
index_t
split_k
=
2
;
SimpleDeviceMem
in
(
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
G
,
N
,
C
,
input_spatial_lengths
));
SimpleDeviceMem
wei
(
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
G
,
K
,
C
,
filter_spatial_lengths
));
SimpleDeviceMem
out
(
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
G
,
N
,
K
,
output_spatial_lengths
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeight
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
G
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{},
split_k
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
G
,
N
,
K
,
C
,
output_spatial_lengths
,
filter_spatial_lengths
);
std
::
size_t
num_bytes
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
G
,
N
,
C
,
input_spatial_lengths
)
+
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
G
,
K
,
C
,
filter_spatial_lengths
)
+
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
G
,
N
,
K
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
G
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{},
split_k
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv2d_bwd_weight_fp16.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Hi
,
Wi
},
{
Y
,
X
},
{
Ho
,
Wo
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp16.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
8
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
128
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
Do
,
Ho
,
Wo
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv3d_bwd_weight_fp32.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
OutDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNDHWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
8
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
128
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Di
,
Hi
,
Wi
},
{
Z
,
Y
,
X
},
{
Do
,
Ho
,
Wo
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/12_elementwise_normalization/CMakeLists.txt
0 → 100644
View file @
1abaedd9
add_executable
(
client_elementwise_layernorm2d elementwise_layernorm2d.cpp
)
target_link_libraries
(
client_elementwise_layernorm2d PRIVATE composable_kernel::device_operations
)
client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp
0 → 100644
View file @
1abaedd9
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp"
using
ADataType
=
ck
::
half_t
;
// Input 1
using
BDataType
=
ck
::
half_t
;
// Input 2
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
XElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
YElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
bool
time_kernel
=
true
;
ck
::
index_t
M
=
48
*
256
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
N
;
auto
mn_size
=
(
M
-
1
)
*
Stride
+
N
;
SimpleDeviceMem
a_dev_buf
(
sizeof
(
ADataType
)
*
mn_size
);
SimpleDeviceMem
b_dev_buf
(
sizeof
(
BDataType
)
*
mn_size
);
SimpleDeviceMem
gamma_dev_buf
(
sizeof
(
GammaDataType
)
*
N
);
SimpleDeviceMem
beta_dev_buf
(
sizeof
(
BetaDataType
)
*
N
);
SimpleDeviceMem
y_dev_buf
(
sizeof
(
YDataType
)
*
mn_size
);
std
::
array
<
const
void
*
,
2
>
ab_input
=
{
a_dev_buf
.
GetDeviceBuffer
(),
b_dev_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
abStride
=
{
Stride
,
1
};
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
abStrides
=
{
abStride
,
abStride
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseNormalization
<
ck
::
Tuple
<
ADataType
,
BDataType
>
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
XElementwiseOperation
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
M
,
N
},
// lengths
abStrides
,
{
0
,
1
},
// gammaStrides
{
0
,
1
},
// betaStrides
{
Stride
,
1
},
// yStrides
{
1
},
// reduceDims
1e-4
,
ab_input
,
gamma_dev_buf
.
GetDeviceBuffer
(),
beta_dev_buf
.
GetDeviceBuffer
(),
y_dev_buf
.
GetDeviceBuffer
(),
XElementwiseOperation
{},
YElementwiseOperation
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
N
+
sizeof
(
BDataType
)
*
M
*
N
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
YDataType
)
*
M
*
N
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
M
,
N
},
// lengths
abStrides
,
{
1
},
// gammaStrides
{
1
},
// betaStrides
{
Stride
,
1
},
// yStrides
{
1
},
// reduceDims
1e-4
,
ab_input
,
gamma_dev_buf
.
GetDeviceBuffer
(),
beta_dev_buf
.
GetDeviceBuffer
(),
y_dev_buf
.
GetDeviceBuffer
(),
XElementwiseOperation
{},
YElementwiseOperation
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
Prev
1
2
3
4
5
6
…
50
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment