Commit 185af92b authored by ltqin's avatar ltqin
Browse files

Merge branch 'develop' into lib_gemm_softmax_gemm_type

parents 5f4a0f73 8bb2bb4a
......@@ -162,9 +162,9 @@ int run_conv2d_fwd_perlayer_quantization_example(const OutElementOp& out_element
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using InLayout = ck::tensor_layout::convolution::NHWGC;
using WeiLayout = ck::tensor_layout::convolution::KYXGC;
using OutLayout = ck::tensor_layout::convolution::NHWGK;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);
......
......@@ -168,6 +168,11 @@
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
// denorm test fix, required to work around dissue
#ifndef CK_WORKAROUND_DENORM_FIX
#define CK_WORKAROUND_DENORM_FIX 0
#endif
namespace ck {
enum struct InMemoryDataOperationEnum
......
......@@ -31,7 +31,7 @@ struct DeviceGroupedGemm : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
static_assert(DsLayout::Size() == DsDataType::Size(), "wrong! inconsisiten NumDTensor");
static_assert(DsLayout::Size() == DsDataType::Size(), "wrong! inconsistent NumDTensor");
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_a,
......
#pragma once
#include <iostream>
#include <vector>
#include "device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct DeviceGroupedGemmSplitK : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>
{
virtual void SetKBatchSize(BaseArgument* p_arg, index_t kbatch) const = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -587,4 +587,52 @@ struct OffsettedBlockToCTileMap
index_t block_start_;
};
/**
* @brief Simple tile mapping which creates 3D grid of block of threads.
*
* @paragraph Description
* This Block-to-C-tile-map creates a 3D grid (n_blocks, m_blocks, z_blocks) of thread
* blocks. The first 2D are regular 2D tiles created by division of output GEMM
* dimenions by corresponding tile size. The third dimension (Z) is a k-split dimension,
* which denotes the number of blocks we use to divide work on GEMM K dimension onto.
*
* @tparam MPerBlock Output block tile size in M dimension.
* @tparam NPerBlock Output block tile size in N dimension.
*/
template <index_t MPerBlock, index_t NPerBlock>
struct BlockToCTileMap_3DGrid_KSplit
{
__host__ __device__ BlockToCTileMap_3DGrid_KSplit() = default;
__host__ __device__ constexpr auto
CalculateGridSize(index_t M, index_t N, index_t k_split) const
{
// Create 3D grid
const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock);
return std::make_tuple(N0, M0, k_split);
}
template <typename TopIdx>
__device__ constexpr auto CalculateBottomIndex(const TopIdx&) const
{
return make_tuple(blockIdx.z, blockIdx.y, blockIdx.x);
}
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& /* c_tile_idx */,
const CTileDim& /* c_tile_dim */) const
{
return true; // always valid provided that user gets grid size from CalculateGridSize()
}
template <typename CGridDesc_M_N>
__host__ bool CheckValidity(const CGridDesc_M_N& /* c_grid_desc_m_n */) const
{
return true;
}
};
} // namespace ck
......@@ -505,6 +505,15 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_k0_m_k1.GetElementSpaceSize() * sizeof(ADataType) <= TwoGB &&
b_grid_desc_k0_n_k1.GetElementSpaceSize() * sizeof(BDataType) <= TwoGB &&
e_grid_desc_m_n.GetElementSpaceSize() * sizeof(EDataType) <= TwoGB))
{
return false;
}
return true;
}
......
......@@ -96,7 +96,7 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// ABDataTypeAdjusted -> ABDataType throughout this file
#if defined(__gfx90a__)
#if CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
using ABDataTypeAdjusted =
conditional_t<is_same_v<ABDataType, ck::half_t>, ck::bhalf_t, ABDataType>;
#else
......
......@@ -264,6 +264,13 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_wmma
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
constexpr long_index_t TwoGB = (long_index_t{1} << 31);
if(!(a_grid_desc_k0_m_k1.GetElementSpaceSize() * sizeof(FloatA) <= TwoGB &&
b_grid_desc_k0_n_k1.GetElementSpaceSize() * sizeof(FloatB) <= TwoGB))
{
return false;
}
return true;
}
......
......@@ -265,7 +265,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
#if defined(__gfx90a__)
#if CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
#else
using FloatABAdjusted = FloatAB;
......
......@@ -135,7 +135,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// we convert fp16->fp32->bf16 and execute bf16 mfma instruction
// when mfma if fixed, remove this section and update
// FloatABAdjusted -> FloatAB throughout this file
#if defined(__gfx90a__)
#if CK_WORKAROUND_DENORM_FIX && defined(__gfx90a__)
using FloatABAdjusted = conditional_t<is_same_v<FloatAB, ck::half_t>, ck::bhalf_t, FloatAB>;
#else
using FloatABAdjusted = FloatAB;
......
......@@ -117,20 +117,6 @@ void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
......@@ -159,20 +145,21 @@ void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
NHWGK,
BF16,
BF16,
Empty_Tuple,
int8_t,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
......@@ -187,6 +174,20 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -385,12 +386,6 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
......@@ -398,7 +393,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
// no instance
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
......@@ -409,12 +404,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
// no instance
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
// no instance
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
......
......@@ -68,6 +68,58 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
......@@ -109,11 +161,17 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
......
......@@ -25,6 +25,10 @@ void add_device_normalization_rank_5_3_swish_f16_instances(
void add_device_normalization_rank_5_3_swish_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Swish, 5, 3>>>&);
// [x, gamma, beta, y] = [f16, f32, f32, f16]
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&);
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
......@@ -70,6 +74,14 @@ struct DeviceOperationInstanceFactory<
add_device_normalization_rank_5_3_swish_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(op_ptrs);
}
}
return op_ptrs;
}
......
......@@ -17,14 +17,14 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -36,10 +36,10 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -52,10 +52,10 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -68,10 +68,10 @@ void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -83,10 +83,10 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -99,10 +99,10 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -154,9 +154,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
......@@ -220,9 +220,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
......
......@@ -17,14 +17,14 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -36,10 +36,10 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -51,10 +51,10 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -67,10 +67,10 @@ void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -82,10 +82,10 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -97,10 +97,10 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -152,9 +152,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
......@@ -218,9 +218,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
......
......@@ -17,13 +17,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -35,10 +35,10 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -50,10 +50,10 @@ void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -65,10 +65,10 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -119,9 +119,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
......
......@@ -17,13 +17,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -35,10 +35,10 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -50,10 +50,10 @@ void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -65,10 +65,10 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -117,8 +117,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment