Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
1462ee22
Unverified
Commit
1462ee22
authored
Dec 02, 2022
by
arai713
Committed by
GitHub
Dec 02, 2022
Browse files
Merge branch 'develop' into gridwise_2d
parents
2c4305b2
d1567094
Changes
148
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1541 additions
and
109 deletions
+1541
-109
client_example/09_quantization/CMakeLists.txt
client_example/09_quantization/CMakeLists.txt
+6
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
+205
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
+1
-1
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
...le/09_quantization/conv2d_fwd_perchannel_quantization.cpp
+198
-0
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
...mple/09_quantization/conv2d_fwd_perlayer_quantization.cpp
+1
-1
client_example/13_batchnorm/CMakeLists.txt
client_example/13_batchnorm/CMakeLists.txt
+2
-0
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
+201
-0
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+1
-0
example/09_convnd_fwd/convnd_fwd_dl_common.hpp
example/09_convnd_fwd/convnd_fwd_dl_common.hpp
+67
-42
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
+9
-8
example/09_convnd_fwd/convnd_fwd_dl_fp32.cpp
example/09_convnd_fwd/convnd_fwd_dl_fp32.cpp
+9
-8
example/09_convnd_fwd/convnd_fwd_dl_int8.cpp
example/09_convnd_fwd/convnd_fwd_dl_int8.cpp
+9
-8
example/09_convnd_fwd/run_convnd_fwd_dl_example.inc
example/09_convnd_fwd/run_convnd_fwd_dl_example.inc
+1
-0
example/14_gemm_quantization/CMakeLists.txt
example/14_gemm_quantization/CMakeLists.txt
+2
-0
example/14_gemm_quantization/gemm_xdl_bias_relu_quantization_int8.cpp
...emm_quantization/gemm_xdl_bias_relu_quantization_int8.cpp
+235
-0
example/14_gemm_quantization/gemm_xdl_quantization_int8.cpp
example/14_gemm_quantization/gemm_xdl_quantization_int8.cpp
+207
-0
example/14_gemm_xdl_quantization/CMakeLists.txt
example/14_gemm_xdl_quantization/CMakeLists.txt
+0
-1
example/34_batchnorm/batchnorm_backward_nhwc.cpp
example/34_batchnorm/batchnorm_backward_nhwc.cpp
+44
-40
example/44_conv2d_fwd_quantization/CMakeLists.txt
example/44_conv2d_fwd_quantization/CMakeLists.txt
+1
-0
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
...conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
+342
-0
No files found.
client_example/09_quantization/CMakeLists.txt
View file @
1462ee22
add_executable
(
client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_perchannel_quantization conv2d_fwd_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
0 → 100644
View file @
1462ee22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
View file @
1462ee22
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include <vector>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/library/tensor_operation_instance/gpu/
quantization/
grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
0 → 100644
View file @
1462ee22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
requant_scale_lengths
},
{
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
View file @
1462ee22
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include <vector>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_perlayer_quantization.hpp"
#include "ck/library/tensor_operation_instance/gpu/
quantization/
grouped_convolution_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
client_example/13_batchnorm/CMakeLists.txt
View file @
1462ee22
add_executable
(
client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp
)
add_executable
(
client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp
)
add_executable
(
client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp
)
target_link_libraries
(
client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations
)
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
0 → 100644
View file @
1462ee22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp"
using
XDataType
=
ck
::
half_t
;
using
DxDataType
=
float
;
using
DyDataType
=
float
;
using
AccDataType
=
float
;
using
ScaleDataType
=
ck
::
half_t
;
using
DscaleDbiasDataType
=
float
;
using
MeanVarDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
4
;
constexpr
int
NumBatchNormReduceDim
=
3
;
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
Rank
>
xyLengths
{
16
,
8
,
128
,
256
};
std
::
array
<
ck
::
index_t
,
Rank
>
xyStrides
{
8
*
128
*
256
,
128
*
256
,
256
,
1
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarLengths
{
256
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarStrides
{
1
};
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
{
0
,
1
,
2
};
ck
::
index_t
numXYElement
=
std
::
accumulate
(
xyLengths
.
begin
(),
xyLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
ck
::
index_t
numScaleBiasMeanVarElement
=
std
::
accumulate
(
scaleBiasMeanVarLengths
.
begin
(),
scaleBiasMeanVarLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
SimpleDeviceMem
x
(
sizeof
(
XDataType
)
*
numXYElement
);
SimpleDeviceMem
dy
(
sizeof
(
DyDataType
)
*
numXYElement
);
SimpleDeviceMem
scale
(
sizeof
(
ScaleDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
mean
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
invVariance
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
dx
(
sizeof
(
DxDataType
)
*
numXYElement
);
SimpleDeviceMem
dscale
(
sizeof
(
DscaleDbiasDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
dbias
(
sizeof
(
DscaleDbiasDataType
)
*
numScaleBiasMeanVarElement
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
PassThrough
,
Rank
,
NumBatchNormReduceDim
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
dy
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
dx
.
GetDeviceBuffer
(),
dscale
.
GetDeviceBuffer
(),
dbias
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
numXYElement
*
(
sizeof
(
XDataType
)
+
sizeof
(
DyDataType
)
+
sizeof
(
DxDataType
))
+
numScaleBiasMeanVarElement
*
(
sizeof
(
ScaleDataType
)
+
sizeof
(
DscaleDbiasDataType
)
*
2
+
sizeof
(
MeanVarDataType
)
*
2
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
dy
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
dx
.
GetDeviceBuffer
(),
dscale
.
GetDeviceBuffer
(),
dbias
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
example/09_convnd_fwd/CMakeLists.txt
View file @
1462ee22
...
@@ -8,3 +8,4 @@ add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp6
...
@@ -8,3 +8,4 @@ add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp6
add_example_executable
(
example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp
)
example/09_convnd_fwd/convnd_fwd_dl_common.hpp
View file @
1462ee22
...
@@ -30,6 +30,7 @@ void print_helper_msg()
...
@@ -30,6 +30,7 @@ void print_helper_msg()
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
WeiElementOp
,
...
@@ -46,8 +47,10 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -46,8 +47,10 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
const
WeiElementOp
&
wei_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
const
OutElementOp
&
out_element_op
)
{
{
using
DDataType
=
ck
::
remove_cvref_t
<
ck
::
tuple_element_t
<
0
,
DsDataType
>>
;
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
DDataType
>
bias
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
...
@@ -59,31 +62,38 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -59,31 +62,38 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
{
{
case
0
:
break
;
case
0
:
break
;
case
1
:
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
3
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
3
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
2
,
3
});
break
;
break
;
case
2
:
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
break
;
break
;
default:
default:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
-
1
});
bias
.
GenerateTensorValue
(
GeneratorTensor_1
<
DDataType
>
{
1
});
}
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
DDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
c_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
c_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
@@ -95,8 +105,10 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -95,8 +105,10 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
c_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
d_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
c_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
d_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
...
@@ -105,25 +117,32 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -105,25 +117,32 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
// do Conv
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
auto
argument
=
conv
.
MakeArgument
(
wei_device_buf
.
GetDeviceBuffer
(),
in_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
a_g_n_c_wis_strides
,
out_device_buf
.
GetDeviceBuffer
(),
b_g_k_c_xs_lengths
,
a_g_n_c_wis_lengths
,
b_g_k_c_xs_strides
,
a_g_n_c_wis_strides
,
c_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
c_g_n_k_wos_strides
,
b_g_k_c_xs_strides
,
conv_filter_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d_g_n_k_wos_lengths
}},
conv_filter_dilations
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d_g_n_k_wos_strides
}},
input_left_pads
,
e_g_n_k_wos_lengths
,
input_right_pads
,
e_g_n_k_wos_strides
,
in_element_op
,
conv_filter_strides
,
wei_element_op
,
conv_filter_dilations
,
out_element_op
);
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does not "
"support this Conv problem"
<<
std
::
endl
;
return
true
;
return
true
;
}
}
...
@@ -139,28 +158,34 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -139,28 +158,34 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
NDimSpatial
,
WeiDataType
,
InDataType
,
OutDataType
,
WeiDataType
,
InElementOp
,
OutDataType
,
WeiElementOp
,
InElementOp
,
OutElementOp
>
();
WeiElementOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
wei
,
auto
ref_argument
=
out_host
,
ref_conv
.
MakeArgument
(
in
,
conv_param
.
conv_filter_strides_
,
wei
,
conv_param
.
conv_filter_dilations_
,
out_host
,
conv_param
.
input_left_pads_
,
conv_param
.
conv_filter_strides_
,
conv_param
.
input_right_pads_
,
conv_param
.
conv_filter_dilations_
,
in_element_op
,
conv_param
.
input_left_pads_
,
wei_element_op
,
conv_param
.
input_right_pads_
,
out_element_op
);
in_element_op
,
wei_element_op
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
// cde_elementwise
out_host
.
ForEach
(
[
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
out_host
(
idx
),
bias
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
return
ck
::
utils
::
check_err
(
...
...
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
View file @
1462ee22
...
@@ -3,13 +3,14 @@
...
@@ -3,13 +3,14 @@
#include "convnd_fwd_dl_common.hpp"
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<
ck
::
half_t
>
;
using
OutDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvSpec
=
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type|
Type|
Type| Type| | |
Layout|
| Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | |
|
| | | |
|
| Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | |
|
| | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
#include "run_convnd_fwd_dl_example.inc"
...
...
example/09_convnd_fwd/convnd_fwd_dl_fp32.cpp
View file @
1462ee22
...
@@ -3,13 +3,14 @@
...
@@ -3,13 +3,14 @@
#include "convnd_fwd_dl_common.hpp"
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
float
;
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
WeiDataType
=
float
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<
float
>
;
using
OutDataType
=
float
;
using
OutDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvSpec
=
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type|
Type|
Type| Type| | |
Layout|
| Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | |
|
| | | |
|
| Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | |
|
| | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
#include "run_convnd_fwd_dl_example.inc"
...
...
example/09_convnd_fwd/convnd_fwd_dl_int8.cpp
View file @
1462ee22
...
@@ -3,13 +3,14 @@
...
@@ -3,13 +3,14 @@
#include "convnd_fwd_dl_common.hpp"
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
AccDataType
=
int32_t
;
using
DsDataType
=
ck
::
Tuple
<
int8_t
>
;
using
OutDataType
=
int8_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvSpec
=
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type|
Type|
Type| Type| | |
Layout|
| Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | |
|
| | | |
|
| Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | |
|
| | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
#include "run_convnd_fwd_dl_example.inc"
...
...
example/09_convnd_fwd/run_convnd_fwd_dl_example.inc
View file @
1462ee22
...
@@ -61,6 +61,7 @@ bool run_convnd_fwd_dl_example(int argc, char* argv[])
...
@@ -61,6 +61,7 @@ bool run_convnd_fwd_dl_example(int argc, char* argv[])
ndim_spatial_value
,
ndim_spatial_value
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
OutDataType
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
...
...
example/14_gemm_quantization/CMakeLists.txt
0 → 100644
View file @
1462ee22
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
\ No newline at end of file
example/14_gemm_quantization/gemm_xdl_bias_relu_quantization_int8.cpp
0 → 100644
View file @
1462ee22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
ActivationOp
>
;
using
ADataType
=
I8
;
using
BDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
BiasDataType
=
I32
;
using
DsDataType
=
ck
::
Tuple
<
BiasDataType
>
;
using
EDataType
=
I8
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BiasLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
BiasLayout
>
;
using
ELayout
=
Row
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
PassThrough
,
// AElementwiseOperation,
PassThrough
,
// BElementwiseOperation,
CDEElementOp
,
// CDEElementwiseOperation,
GemmDefault
,
// GemmSpecialization GemmSpec,
1
,
// NumGemmKPrefetchStage,
256
,
// BlockSize,
256
,
// MPerBlock,
128
,
// NPerBlock,
64
,
// KPerBlock,
16
,
// AK1,
16
,
// BK1,
32
,
// MPerXDL,
32
,
// NPerXDL,
4
,
// MXdlPerWave,
2
,
// NXdlPerWave,
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1,
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder,
2
,
// index_t ABlockTransferSrcVectorDim,
16
,
// index_t ABlockTransferSrcScalarPerVector,
16
,
// index_t ABlockTransferDstScalarPerVector_AK1,
1
,
// bool ABlockLdsExtraM,
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder,
2
,
// index_t BBlockTransferSrcVectorDim,
8
,
// index_t BBlockTransferSrcScalarPerVector,
8
,
// index_t BBlockTransferDstScalarPerVector_BK1,
1
,
// bool BBlockLdsExtraN,
1
,
// index_t CShuffleMXdlPerWavePerShuffle,
1
,
// index_t CShuffleNXdlPerWavePerShuffle,
S
<
1
,
64
,
1
,
4
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideBias
=
0
;
ck
::
index_t
StrideE
=
1024
;
float
requant_scale
=
0.03
;
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
_uz
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
_uz
,
stride
}));
}
};
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BiasDataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_n: "
<<
bias_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
128
,
127
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
128
,
127
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
128
,
127
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
cde_element_op
=
CDEElementOp
{
requant_scale
,
ActivationOp
{}};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideBias
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
bias_n
(
n
));
}
}
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/14_gemm_
xdl_
quantization/gemm_xdl_
relu_
quantization_int8.cpp
→
example/14_gemm_quantization/gemm_xdl_quantization_int8.cpp
View file @
1462ee22
...
@@ -9,7 +9,7 @@
...
@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_
multiple_d_
xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -22,50 +22,59 @@
...
@@ -22,50 +22,59 @@
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
ActivationOp
=
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
using
C
DE
ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
using
ADataType
=
int8_t
;
using
ADataType
=
I8
;
using
BDataType
=
int8_t
;
using
BDataType
=
I8
;
using
CDataType
=
int8_t
;
using
AccDataType
=
I32
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
I32
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
I8
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ALayout
=
Row
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
BLayout
=
Col
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
<
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
// typename ALayout,
ALayout
,
BLayout
,
// typename BLayout,
BLayout
,
CLayout
,
// typename CLayout,
DsLayout
,
ADataType
,
// typename ADataType,
ELayout
,
BDataType
,
// typename BDataType,
ADataType
,
CDataType
,
// typename CDataType,
BDataType
,
AccDataType
,
// typename GemmAccDataType,
AccDataType
,
CShuffleDataType
,
// typename CShuffleDataType,
CShuffleDataType
,
PassThrough
,
// typename AElementwiseOperation,
DsDataType
,
PassThrough
,
// typename BElementwiseOperation,
EDataType
,
CElementOp
,
// typename CElementwiseOperation,
PassThrough
,
// AElementwiseOperation,
PassThrough
,
// BElementwiseOperation,
CDEElementOp
,
// CDEElementwiseOperation,
GemmDefault
,
// GemmSpecialization GemmSpec,
GemmDefault
,
// GemmSpecialization GemmSpec,
1
,
//
index_t
NumGemmKPrefetchStage,
1
,
// NumGemmKPrefetchStage,
256
,
//
index_t
BlockSize,
256
,
// BlockSize,
256
,
//
index_t
MPerBlock,
256
,
// MPerBlock,
128
,
//
index_t
NPerBlock,
128
,
// NPerBlock,
64
,
//
index_t
KPerBlock,
64
,
// KPerBlock,
16
,
//
index_t
AK1,
16
,
// AK1,
16
,
//
index_t
BK1,
16
,
// BK1,
32
,
//
index_t
MPerXDL,
32
,
// MPerXDL,
32
,
//
index_t
NPerXDL,
32
,
// NPerXDL,
4
,
//
index_t
MXdlPerWave,
4
,
// MXdlPerWave,
2
,
//
index_t
NXdlPerWave,
2
,
// NXdlPerWave,
S
<
4
,
64
,
1
>
,
//
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1,
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1,
S
<
1
,
0
,
2
>
,
//
typename
ABlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
//
typename
ABlockTransferSrcAccessOrder,
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder,
2
,
// index_t ABlockTransferSrcVectorDim,
2
,
// index_t ABlockTransferSrcVectorDim,
16
,
// index_t ABlockTransferSrcScalarPerVector,
16
,
// index_t ABlockTransferSrcScalarPerVector,
16
,
// index_t ABlockTransferDstScalarPerVector_AK1,
16
,
// index_t ABlockTransferDstScalarPerVector_AK1,
...
@@ -84,53 +93,23 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
...
@@ -84,53 +93,23 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// clang-format on
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
C
DataType
,
float
,
PassThrough
,
PassThrough
,
CElementOp
>
;
ReferenceGemm
<
ADataType
,
BDataType
,
E
DataType
,
float
,
PassThrough
,
PassThrough
,
C
DE
ElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[]
)
int
main
()
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// GEMM shape
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
float
quant_multiplier
=
0.03
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
])
;
ck
::
index_t
StrideA
=
1024
;
N
=
std
::
stoi
(
argv
[
5
])
;
ck
::
index_t
StrideB
=
1024
;
K
=
std
::
stoi
(
argv
[
6
])
;
ck
::
index_t
StrideE
=
1024
;
StrideA
=
std
::
stoi
(
argv
[
7
]);
float
requant_scale
=
0.03
;
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
...
@@ -138,61 +117,56 @@ int main(int argc, char* argv[])
...
@@ -138,61 +117,56 @@ int main(int argc, char* argv[])
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
_uz
}));
}
}
else
else
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
_uz
,
stride
}));
}
}
};
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
C
DataType
>
c
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
E
Layout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c
_m_n: "
<<
c
_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
e
_m_n: "
<<
e
_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
128
,
127
});
{
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
128
,
127
});
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_
m_k_
device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_
k_n_
device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n
_device_buf
(
sizeof
(
C
DataType
)
*
c
_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e
_device_buf
(
sizeof
(
E
DataType
)
*
e
_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_
m_k_
device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_
k_n_
device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
CElementOp
{
quant_
multiplier
,
ActivationOp
{}};
auto
c
de
_element_op
=
C
DE
ElementOp
{
re
quant_
scale
,
ActivationOp
{}};
// do GEMM
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
b_device_buf
.
GetDeviceBuffer
(),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
M
,
N
,
N
,
K
,
K
,
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
{},
StrideE
,
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
c_element_op
);
c
de
_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
{
...
@@ -205,7 +179,7 @@ int main(int argc, char* argv[])
...
@@ -205,7 +179,7 @@ int main(int argc, char* argv[])
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
;
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
E
DataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
@@ -214,7 +188,7 @@ int main(int argc, char* argv[])
...
@@ -214,7 +188,7 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n
_device_buf
.
FromDevice
(
c
_m_n_device_result
.
mData
.
data
());
e
_device_buf
.
FromDevice
(
e
_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
if
(
do_verification
)
{
{
...
@@ -222,11 +196,11 @@ int main(int argc, char* argv[])
...
@@ -222,11 +196,11 @@ int main(int argc, char* argv[])
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c
_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
a_m_k
,
b_k_n
,
e
_m_n_host_result
,
a_element_op
,
b_element_op
,
c
de
_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c
_m_n_device_result
,
c
_m_n_host_result
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e
_m_n_device_result
,
e
_m_n_host_result
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/14_gemm_xdl_quantization/CMakeLists.txt
deleted
100644 → 0
View file @
2c4305b2
add_example_executable
(
example_gemm_xdl_relu_quantization_int8 gemm_xdl_relu_quantization_int8.cpp
)
\ No newline at end of file
example/34_batchnorm/batchnorm_backward_nhwc.cpp
View file @
1462ee22
...
@@ -11,7 +11,7 @@
...
@@ -11,7 +11,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward
_nhwc_c
.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
...
@@ -106,7 +106,7 @@ class BatchNormBwdArg
...
@@ -106,7 +106,7 @@ class BatchNormBwdArg
using
namespace
ck
;
using
namespace
ck
;
template
<
typename
InOut
DataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
template
<
typename
X
DataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
bool
bnorm_bwd_nhwc_test
(
bool
do_verification
,
bool
bnorm_bwd_nhwc_test
(
bool
do_verification
,
int
init_method
,
int
init_method
,
bool
time_kernel
,
bool
time_kernel
,
...
@@ -118,13 +118,15 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -118,13 +118,15 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
constexpr
index_t
Rank
=
4
;
constexpr
index_t
Rank
=
4
;
constexpr
index_t
NumReduceDim
=
3
;
constexpr
index_t
NumReduceDim
=
3
;
using
ScaleDataType
=
XDataType
;
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm backward algorithm
// input data of the batchnorm backward algorithm
Tensor
<
InOut
DataType
>
x
(
inOutLengths
);
Tensor
<
X
DataType
>
x
(
inOutLengths
);
Tensor
<
InOut
DataType
>
dy
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dy
(
inOutLengths
);
Tensor
<
Acc
DataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
Scale
DataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedInvVar
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedInvVar
(
scaleBiasMeanVarLengths
);
...
@@ -132,8 +134,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -132,8 +134,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
Tensor
<
AccDataType
>
savedVariance
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedVariance
(
scaleBiasMeanVarLengths
);
// output data of the batchnorm backward algorithm
// output data of the batchnorm backward algorithm
Tensor
<
InOut
DataType
>
dx_ref
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dx_ref
(
inOutLengths
);
Tensor
<
InOut
DataType
>
dx
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dx
(
inOutLengths
);
Tensor
<
AccDataType
>
dscale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dscale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias
(
scaleBiasMeanVarLengths
);
...
@@ -153,7 +155,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -153,7 +155,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
const
float
noise_stddev
=
0.0001
f
;
const
float
noise_stddev
=
0.0001
f
;
// input data in normal distribution
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOut
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
X
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
// initialize the savedMean to be values with tiny variation to the mean of the x values
// initialize the savedMean to be values with tiny variation to the mean of the x values
savedMean
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
savedMean
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
...
@@ -182,7 +184,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -182,7 +184,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
const
float
x_stddev
=
1.0
f
;
const
float
x_stddev
=
1.0
f
;
// input data in normal distribution
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOut
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
X
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
};
};
if
(
do_verification
)
if
(
do_verification
)
...
@@ -190,34 +192,34 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -190,34 +192,34 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOut
DataType
>
{},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
Acc
DataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOut
DataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
Scale
DataType
>
{},
num_thread
);
break
;
break
;
case
1
:
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOut
DataType
>
{
1
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
Acc
DataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOut
DataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
Scale
DataType
>
{
1
},
num_thread
);
break
;
break
;
case
2
:
case
2
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOut
DataType
>
{
-
5
,
5
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
Acc
DataType
>
{
-
2
,
2
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOut
DataType
>
{
-
5
,
5
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
Scale
DataType
>
{
-
5
,
5
},
num_thread
);
break
;
break
;
default:
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOut
DataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
Acc
DataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOut
DataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
Scale
DataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
}
}
};
};
// input data of the batchnorm backward algorithm
// input data of the batchnorm backward algorithm
DeviceMem
x_dev
(
sizeof
(
InOut
DataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
X
DataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
InOut
DataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
Acc
DataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
Acc
DataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
Scale
DataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedMean_dev
(
sizeof
(
AccDataType
)
*
savedMean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedMean_dev
(
sizeof
(
AccDataType
)
*
savedMean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedInvVar_dev
(
sizeof
(
AccDataType
)
*
savedInvVar
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedInvVar_dev
(
sizeof
(
AccDataType
)
*
savedInvVar
.
mDesc
.
GetElementSpaceSize
());
// output data of the batchnorm backward algorithm
// output data of the batchnorm backward algorithm
DeviceMem
dx_dev
(
sizeof
(
InOut
DataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
Acc
DataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dscale_dev
(
sizeof
(
AccDataType
)
*
dscale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dscale_dev
(
sizeof
(
AccDataType
)
*
dscale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbias_dev
(
sizeof
(
AccDataType
)
*
dbias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbias_dev
(
sizeof
(
AccDataType
)
*
dbias
.
mDesc
.
GetElementSpaceSize
());
...
@@ -249,13 +251,13 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -249,13 +251,13 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchNormBwdInstance
=
using
DeviceBatchNormBwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
InOut
DataType
,
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
X
DataType
,
InOut
DataType
,
Acc
DataType
,
InOut
DataType
,
Acc
DataType
,
AccDataType
,
AccDataType
,
Acc
DataType
,
// ScaleDataType
Scale
DataType
,
// ScaleDataType
AccDataType
,
//
B
iasDataType
AccDataType
,
//
DscaleDb
iasDataType
AccDataType
,
// MeanVarDataType
AccDataType
,
// MeanVarDataType
PassThroughOp
,
PassThroughOp
,
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
...
@@ -269,8 +271,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -269,8 +271,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
1
,
// XSrcVectorSize
1
,
// XSrcVectorSize
1
,
// DySrcVectorSize
1
,
// DySrcVectorSize
1
,
// DxDstVectorSize
1
,
// DxDstVectorSize
1
,
// ScaleSrc
Dst
VectorSize
1
,
// ScaleSrcVectorSize
1
,
//
B
iasDstVectorSize
1
,
//
DscaleDb
iasDstVectorSize
1
>
;
// MeanVarSrcVectorSize
1
>
;
// MeanVarSrcVectorSize
auto
batchnorm_bwd
=
DeviceBatchNormBwdInstance
{};
auto
batchnorm_bwd
=
DeviceBatchNormBwdInstance
{};
...
@@ -324,7 +326,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -324,7 +326,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
// inputing of x, dy, scale, outputing of dx, dscale, dbias
// inputing of x, dy, scale, outputing of dx, dscale, dbias
num_bytes
+=
num_bytes
+=
total_length
*
sizeof
(
InOut
DataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
total_length
*
sizeof
(
X
DataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
// outputing of mean, inv-variance
// outputing of mean, inv-variance
num_bytes
+=
haveSavedMeanInvVar
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
num_bytes
+=
haveSavedMeanInvVar
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
...
@@ -341,14 +343,16 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -341,14 +343,16 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
using
ReferenceBatchNormBwdInstance
=
using
ReferenceBatchNormBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
<
InOutDataType
,
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd
<
XDataType
,
InOutDataType
,
AccDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
// ScaleDataType
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
PassThroughOp
>
;
PassThroughOp
,
Rank
,
NumReduceDim
>
;
auto
batchNormBwd_ref
=
ReferenceBatchNormBwdInstance
{};
auto
batchNormBwd_ref
=
ReferenceBatchNormBwdInstance
{};
...
@@ -390,8 +394,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -390,8 +394,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
dbias_dev
.
FromDevice
(
dbias
.
data
());
dbias_dev
.
FromDevice
(
dbias
.
data
());
// clang-format off
// clang-format off
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
1
e-
5
,
1
e-
5
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
2
e-
4
,
2
e-
4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
1
e-
5
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
2
e-
4
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dx
.
mData
,
dx_ref
.
mData
,
"dx result:"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dx
.
mData
,
dx_ref
.
mData
,
"dx result:"
);
// clang-format on
// clang-format on
};
};
...
...
example/44_conv2d_fwd_quant/CMakeLists.txt
→
example/44_conv2d_fwd_quant
ization
/CMakeLists.txt
View file @
1462ee22
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
0 → 100644
View file @
1462ee22
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
RequantScaleLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_k_desc
,
const
HostTensorDescriptor
&
requant_scale_g_k_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
BiasDataType
>
bias
(
bias_g_k_desc
);
Tensor
<
RequantScaleDataType
>
requant_scale
(
requant_scale_g_k_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"requant_scale: "
<<
requant_scale
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
128
,
127
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
128
,
127
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
128
,
127
});
requant_scale
.
GenerateTensorValue
(
GeneratorTensor_2
<
RequantScaleDataType
>
{
0
,
1
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
requant_scale_device_buf
(
sizeof
(
RequantScaleDataType
)
*
requant_scale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
requant_scale_device_buf
.
ToDevice
(
requant_scale
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d1_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d1_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_k_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_k_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
requant_scale_g_k_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
requant_scale_g_k_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
(),
requant_scale_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{
d0_g_n_k_wos_lengths
,
d1_g_n_k_wos_lengths
},
{
d0_g_n_k_wos_strides
,
d1_g_n_k_wos_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
requant_scale
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
ck
::
index_t
ndim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ndim_spatial
,
// n_dim
1
,
// group
4
,
// batch
64
,
// output channels
32
,
// input chanels
{
3
,
3
},
// weight HW
{
71
,
71
},
// x HW
{
2
,
2
},
// strides
{
1
,
1
},
// dilations
{
1
,
1
},
// left_pads
{
1
,
1
}
// right_pads
};
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{
ActivationOp
{}};
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
// TODO - make_bias_host_tensor_descriptor_g_n_k_wos_packed()
const
auto
bias_g_k_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
requant_scale_g_k_desc
=
bias_g_k_desc
;
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
cout
<<
out_g_n_k_wos_desc
<<
std
::
endl
;
using
deviceOp
=
DeviceGroupedConvNDFwdInstance
<
ndim_spatial
,
InLayout
,
WeiLayout
,
BiasLayout
,
RequantScaleLayout
,
OutLayout
>
;
return
run_grouped_conv_fwd
<
ndim_spatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
deviceOp
>
(
do_verification
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_k_desc
,
requant_scale_g_k_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
Prev
1
2
3
4
5
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment