Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
11001fa3
Unverified
Commit
11001fa3
authored
Oct 09, 2023
by
arai713
Committed by
GitHub
Oct 09, 2023
Browse files
Merge branch 'develop' into transpose_5d
parents
c4926252
59136091
Changes
193
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
768 additions
and
80 deletions
+768
-80
CHANGELOG.md
CHANGELOG.md
+47
-26
CMakeLists.txt
CMakeLists.txt
+13
-8
Dockerfile
Dockerfile
+1
-1
Jenkinsfile
Jenkinsfile
+2
-2
client_example/10_grouped_conv2d_bwd_data/CMakeLists.txt
client_example/10_grouped_conv2d_bwd_data/CMakeLists.txt
+0
-2
client_example/10_grouped_convnd_bwd_data/CMakeLists.txt
client_example/10_grouped_convnd_bwd_data/CMakeLists.txt
+8
-0
client_example/10_grouped_convnd_bwd_data/grouped_conv2d_bwd_data.cpp
...le/10_grouped_convnd_bwd_data/grouped_conv2d_bwd_data.cpp
+0
-0
client_example/10_grouped_convnd_bwd_data/grouped_conv3d_bwd_data.cpp
...le/10_grouped_convnd_bwd_data/grouped_conv3d_bwd_data.cpp
+205
-0
client_example/10_grouped_convnd_bwd_data/grouped_conv3d_bwd_data_input_fp16_comp_bf8f8.cpp
...wd_data/grouped_conv3d_bwd_data_input_fp16_comp_bf8f8.cpp
+207
-0
client_example/16_convnd_fwd/CMakeLists.txt
client_example/16_convnd_fwd/CMakeLists.txt
+14
-4
client_example/16_convnd_fwd/common.hpp
client_example/16_convnd_fwd/common.hpp
+4
-2
client_example/16_convnd_fwd/conv3d_fwd_fp16_comp_fp8.cpp
client_example/16_convnd_fwd/conv3d_fwd_fp16_comp_fp8.cpp
+46
-0
client_example/21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
.../21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
+4
-5
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp16.cpp
...nt_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp16.cpp
+4
-6
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp8.cpp
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp8.cpp
+4
-5
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_i8.cpp
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_i8.cpp
+4
-5
client_example/22_im2col_col2im/CMakeLists.txt
client_example/22_im2col_col2im/CMakeLists.txt
+5
-0
client_example/22_im2col_col2im/column_to_image.cpp
client_example/22_im2col_col2im/column_to_image.cpp
+173
-0
client_example/22_im2col_col2im/image_to_column.cpp
client_example/22_im2col_col2im/image_to_column.cpp
+16
-10
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+11
-4
No files found.
CHANGELOG.md
View file @
11001fa3
# Change
L
og for Composable Kernel
# Change
l
og for Composable Kernel
Full documentation for Composable Kernel is not yet available.
Full documentation for Composable Kernel is not yet available.
##
CK 0.2.0
for ROCm
5.5
.0
##
(Unreleased) CK
for ROCm
6.0
.0
### Fixe
d
### Fixe
s
-
Fixed a
bug in 6-dimensional kernels (#555).
-
Fixed a
hazard associated with inline v_dot (#808)
-
Fixed grouped
C
onv
BwdWeight test case failure (#524).
-
Fixed
two bugs in
grouped
c
onv
olution backward data without K padding (#848 #876)
### Optimizations
### Optimizations
-
Improve proformance of normalization kernel
None
### Added
### Additions
-
Added new cmake flag "DL_KERNELS" must be set to "ON" in order to build the gemm_dl and batched_gemm_multi_d_dl instances.
-
Added an image to a column kernel (#867)
-
Added new cmake flag "DTYPES" which could be set to any subset of "fp64;fp32;fp16;fp8;bf16;int8" to build instance of select data types.
-
Added a column to an image kernel (#930)
-
Added new cmake flag "INSTANCES_ONLY" which will only build CK library and instances without the tests, examples, or profiler.
-
Support for 3D grouped convolution forward on RDNA 3 GPUs (#935)
-
Added new feature: if GPU_TARGETS is not set on cmake command line, CK will be built for all targets supported by compiler.
-
Grouped convolution support for small K and C (#822 #879 #897)
-
Added support on MI300A/MI300X.
-
Support for NHWGC (2D and 3D) grouped convolution backward weight (#769 #804)
-
Added support on NAVI3x.
-
Support for bf16/f32/f16 and NHWGC (2D and 3d) grouped convolution backward data (#757 #799)
-
Added user tutorial (#563).
-
Support for Batched Gemm DL (#732)
-
Added more instances for irregular GEMM sizes (#560).
-
Added inter-wave consumer-producer programming model for GEMM kernels (#310).
### Changes
-
Added multi-D GEMM client APIs (#534).
-
Changed the grouped convolution API to maintain consistency with other convolution kernels (#817)
-
Added multi-embeddings support (#542).
-
Added Navi3x blockwise GEMM and real GEMM support (#541).
## CK 0.2.0 for ROCm 5.7.0
-
Added Navi grouped ConvBwdWeight support (#505).
-
Added MaxPool, AvgPool forward (#815).
### Fixes
-
Added MaxPool backward (#750).
-
Fixed a bug in 6-dimensional kernels (#555)
-
Fixed a test case failure with grouped convolution backward weight (#524)
### Changed
-
Changed ...
### Optimizations
-
Improved the performance of the normalization kernel
### Additions
-
New CMake flags:
-
"DL_KERNELS"-- Must be set to "ON" in order to build the gemm_dl and batched_gemm_multi_d_dl instances
-
"DTYPES" -- Can be set to any subset of "fp64;fp32;fp16;fp8;bf16;int8" to build an instance of the specified data types
-
"INSTANCES_ONLY" -- Only builds CK library and instances without tests, examples, or profiler
-
New feature: if GPU_TARGETS is not set in the CMake command line, CK will be built for all targets supported by the compiler
-
Support for MI300A/MI300X
-
Support for AMD RDNA 3
-
New user tutorial (#563)
-
Additional instances for irregular GEMM sizes (#560)
-
New inter-wave consumer-producer programming model for GEMM kernels (#310)
-
GEMM with support multiple elementwise fusions (multi-D) (#534)
-
Multi-embeddings support (#542)
-
AMD RDNA 3 blockwise GEMM and real GEMM support (#541)
-
AMD RDNA grouped convolution backward weight support (#505)
-
MaxPool and AvgPool forward (#815); MaxPool backward (#750)
### Changes
None
CMakeLists.txt
View file @
11001fa3
cmake_minimum_required
(
VERSION 3.14
)
cmake_minimum_required
(
VERSION 3.14
)
cmake_policy
(
SET CMP0140 NEW
)
if
(
POLICY CMP0140
)
# policies CMP0140 not known to CMake until 3.25
cmake_policy
(
SET CMP0140 NEW
)
endif
()
# This has to be initialized before the project() command appears
# This has to be initialized before the project() command appears
# Set the default of CMAKE_BUILD_TYPE to be release, unless user specifies with -D. MSVC_IDE does not use CMAKE_BUILD_TYPE
# Set the default of CMAKE_BUILD_TYPE to be release, unless user specifies with -D. MSVC_IDE does not use CMAKE_BUILD_TYPE
...
@@ -103,21 +106,23 @@ message("checking which targets are supported")
...
@@ -103,21 +106,23 @@ message("checking which targets are supported")
#Setting GPU_TARGETS on command line will override this list
#Setting GPU_TARGETS on command line will override this list
if
(
NOT PROFILER_ONLY
)
if
(
NOT PROFILER_ONLY
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS
TARGETS
"
gfx900;gfx906;
gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102"
)
TARGETS
"gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101;gfx1102"
)
else
()
else
()
add_definitions
(
-DPROFILER_ONLY
)
add_definitions
(
-DPROFILER_ONLY
)
set
(
GPU_TARGETS
""
CACHE STRING
""
FORCE
)
set
(
GPU_TARGETS
""
CACHE STRING
""
FORCE
)
if
(
GPU_TARGETS
)
if
(
GPU_TARGETS
)
message
(
FATAL_ERROR
"For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx9, gfx10, or gfx11"
)
message
(
FATAL_ERROR
"For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx9
0, gfx94
, gfx10, or gfx11"
)
endif
()
endif
()
if
(
GPU_ARCH MATCHES
"gfx9"
)
if
(
GPU_ARCH MATCHES
"gfx90"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx900;gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx908;gfx90a"
)
elseif
(
GPU_ARCH MATCHES
"gfx94"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx940;gfx941;gfx942"
)
elseif
(
GPU_ARCH MATCHES
"gfx10"
)
elseif
(
GPU_ARCH MATCHES
"gfx10"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx1030"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx1030"
)
elseif
(
GPU_ARCH MATCHES
"gfx11"
)
elseif
(
GPU_ARCH MATCHES
"gfx11"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx1100;gfx1101;gfx1102"
)
rocm_check_target_ids
(
DEFAULT_GPU_TARGETS TARGETS
"gfx1100;gfx1101;gfx1102"
)
else
()
else
()
message
(
FATAL_ERROR
"For PROFILE_ONLY build, please specify GPU_ARCH as gfx9, gfx10, or gfx11"
)
message
(
FATAL_ERROR
"For PROFILE_ONLY build, please specify GPU_ARCH as gfx9
0, gfx94
, gfx10, or gfx11"
)
endif
()
endif
()
set
(
GPU_TARGETS
"
${
DEFAULT_GPU_TARGETS
}
"
CACHE STRING
" "
FORCE
)
set
(
GPU_TARGETS
"
${
DEFAULT_GPU_TARGETS
}
"
CACHE STRING
" "
FORCE
)
endif
()
endif
()
...
@@ -441,14 +446,14 @@ if(NOT DEFINED INSTANCES_ONLY)
...
@@ -441,14 +446,14 @@ if(NOT DEFINED INSTANCES_ONLY)
rocm_package_setup_component
(
profiler
rocm_package_setup_component
(
profiler
LIBRARY_NAME composablekernel
LIBRARY_NAME composablekernel
PACKAGE_NAME ck
P
rofiler
PACKAGE_NAME ck
p
rofiler
)
)
add_subdirectory
(
profiler
)
add_subdirectory
(
profiler
)
else
()
else
()
#When building PROFILER_ONLY, label the package with GPU_ARCH
#When building PROFILER_ONLY, label the package with GPU_ARCH
rocm_package_setup_component
(
profiler
rocm_package_setup_component
(
profiler
LIBRARY_NAME composablekernel
LIBRARY_NAME composablekernel
PACKAGE_NAME ck
P
rofiler_
${
GPU_ARCH
}
PACKAGE_NAME ck
p
rofiler_
${
GPU_ARCH
}
)
)
add_subdirectory
(
profiler
)
add_subdirectory
(
profiler
)
endif
()
endif
()
...
...
Dockerfile
View file @
11001fa3
FROM
ubuntu:20.04
FROM
ubuntu:20.04
ARG
DEBIAN_FRONTEND=noninteractive
ARG
DEBIAN_FRONTEND=noninteractive
ARG
ROCMVERSION=5.
6
ARG
ROCMVERSION=5.
7
ARG
compiler_version=""
ARG
compiler_version=""
ARG
compiler_commit=""
ARG
compiler_commit=""
...
...
Jenkinsfile
View file @
11001fa3
...
@@ -713,8 +713,8 @@ pipeline {
...
@@ -713,8 +713,8 @@ pipeline {
}
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941" """
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941
;gfx942
" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx940;gfx941
;gfx942
" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
}
steps
{
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
...
...
client_example/10_grouped_conv2d_bwd_data/CMakeLists.txt
deleted
100644 → 0
View file @
c4926252
add_executable
(
client_grouped_conv2d_bwd_data grouped_conv2d_bwd_data.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_data PRIVATE composable_kernel::device_operations
)
client_example/10_grouped_convnd_bwd_data/CMakeLists.txt
0 → 100644
View file @
11001fa3
add_executable
(
client_grouped_conv2d_bwd_data grouped_conv2d_bwd_data.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_data PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_conv3d_bwd_data grouped_conv3d_bwd_data.cpp
)
target_link_libraries
(
client_grouped_conv3d_bwd_data PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_conv3d_bwd_data_input_fp16_comp_bf8f8 grouped_conv3d_bwd_data_input_fp16_comp_bf8f8.cpp
)
target_link_libraries
(
client_grouped_conv3d_bwd_data_input_fp16_comp_bf8f8 PRIVATE composable_kernel::device_operations
)
client_example/10_grouped_conv
2
d_bwd_data/grouped_conv2d_bwd_data.cpp
→
client_example/10_grouped_conv
n
d_bwd_data/grouped_conv2d_bwd_data.cpp
View file @
11001fa3
File moved
client_example/10_grouped_convnd_bwd_data/grouped_conv3d_bwd_data.cpp
0 → 100644
View file @
11001fa3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
2
;
static
constexpr
ck
::
index_t
N
=
16
;
static
constexpr
ck
::
index_t
K
=
16
;
static
constexpr
ck
::
index_t
C
=
16
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
14
;
static
constexpr
ck
::
index_t
Hi
=
14
;
static
constexpr
ck
::
index_t
Wi
=
14
;
static
constexpr
ck
::
index_t
Do
=
14
;
static
constexpr
ck
::
index_t
Ho
=
14
;
static
constexpr
ck
::
index_t
Wo
=
14
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
client_example/10_grouped_convnd_bwd_data/grouped_conv3d_bwd_data_input_fp16_comp_bf8f8.cpp
0 → 100644
View file @
11001fa3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
2
;
static
constexpr
ck
::
index_t
N
=
16
;
static
constexpr
ck
::
index_t
K
=
16
;
static
constexpr
ck
::
index_t
C
=
16
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
14
;
static
constexpr
ck
::
index_t
Hi
=
14
;
static
constexpr
ck
::
index_t
Wi
=
14
;
static
constexpr
ck
::
index_t
Do
=
14
;
static
constexpr
ck
::
index_t
Ho
=
14
;
static
constexpr
ck
::
index_t
Wo
=
14
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
C
,
Di
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
C
,
Di
*
Hi
*
Wi
*
G
*
C
,
1
,
Hi
*
Wi
*
G
*
C
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
C
,
Z
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
K
*
Z
*
Y
*
X
*
C
,
Z
*
Y
*
X
*
C
,
1
,
Y
*
X
*
C
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
K
,
Do
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
K
,
Do
*
Ho
*
Wo
*
G
*
K
,
1
,
Ho
*
Wo
*
G
*
K
,
Wo
*
G
*
K
,
G
*
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdDataMultipleD
<
NumDimSpatial
,
OutLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
InLayout
,
OutDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
InDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
ck
::
bf8_t
,
ck
::
f8_t
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Do
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Di
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Z
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Do
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
out
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
in
.
GetDeviceBuffer
(),
out_lengths
,
out_strides
,
wei_lengths
,
wei_strides
,
{},
{},
in_lengths
,
in_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
client_example/16_convnd_fwd/CMakeLists.txt
View file @
11001fa3
add_executable
(
client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp
)
if
((
DTYPES MATCHES
"fp16"
)
OR NOT DEFINED DTYPES
)
add_executable
(
client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp
)
add_executable
(
client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations
)
endif
()
target_link_libraries
(
client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations
)
if
((
DTYPES MATCHES
"fp8"
)
OR NOT DEFINED DTYPES
)
add_executable
(
client_conv3d_fwd_fp16_comp_fp8 conv3d_fwd_fp16_comp_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp16_comp_fp8 PRIVATE composable_kernel::device_operations
)
endif
()
if
((
DTYPES MATCHES
"fp32"
)
OR NOT DEFINED DTYPES
)
add_executable
(
client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp
)
target_link_libraries
(
client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations
)
endif
()
client_example/16_convnd_fwd/common.hpp
View file @
11001fa3
...
@@ -94,7 +94,8 @@ template <ck::index_t NumDimSpatial,
...
@@ -94,7 +94,8 @@ template <ck::index_t NumDimSpatial,
typename
InLayout
,
typename
InLayout
,
typename
WeiLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
>
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
ComputeType
=
InDataType
>
bool
run_grouped_conv_fwd
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
bool
run_grouped_conv_fwd
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
...
@@ -184,7 +185,8 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
...
@@ -184,7 +185,8 @@ bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialD
OutDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
>
;
PassThrough
,
ComputeType
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
DeviceOp
>::
GetInstances
();
...
...
client_example/16_convnd_fwd/conv3d_fwd_fp16_comp_fp8.cpp
0 → 100644
View file @
11001fa3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
ck
::
f8_t
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/21_grouped_gemm_bias/grouped_gemm_fixed_nk_bias_fp16.cpp
View file @
11001fa3
...
@@ -60,14 +60,13 @@ int main()
...
@@ -60,14 +60,13 @@ int main()
int
sum_of_m
=
0
;
int
sum_of_m
=
0
;
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
const
int
group_count
=
16
;
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
{
Ns
.
push_back
(
768
);
Ms
.
push_back
(
256
+
256
*
i
);
Ks
.
push_back
(
4608
);
Ns
.
push_back
(
128
+
128
*
i
);
Ks
.
push_back
(
128
+
64
*
i
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
...
...
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp16.cpp
View file @
11001fa3
...
@@ -57,15 +57,13 @@ int main()
...
@@ -57,15 +57,13 @@ int main()
int
sum_of_m
=
0
;
int
sum_of_m
=
0
;
// Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
const
int
group_count
=
16
;
Ms
=
{
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
};
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
{
Ns
.
push_back
(
768
);
Ms
.
push_back
(
256
+
256
*
i
);
Ks
.
push_back
(
4608
);
Ns
.
push_back
(
128
+
128
*
i
);
Ks
.
push_back
(
128
+
64
*
i
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
...
...
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_fp8.cpp
View file @
11001fa3
...
@@ -58,14 +58,13 @@ int main()
...
@@ -58,14 +58,13 @@ int main()
int
sum_of_m
=
0
;
int
sum_of_m
=
0
;
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
const
int
group_count
=
16
;
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
{
Ns
.
push_back
(
768
);
Ms
.
push_back
(
256
+
256
*
i
);
Ks
.
push_back
(
4608
);
Ns
.
push_back
(
128
+
128
*
i
);
Ks
.
push_back
(
128
+
64
*
i
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
...
...
client_example/22_grouped_gemm/grouped_gemm_fixed_nk_i8.cpp
View file @
11001fa3
...
@@ -58,14 +58,13 @@ int main()
...
@@ -58,14 +58,13 @@ int main()
int
sum_of_m
=
0
;
int
sum_of_m
=
0
;
Ms
=
{
167
,
183
,
177
,
181
,
153
,
139
,
156
,
173
,
163
,
150
,
204
,
184
,
168
,
156
,
168
,
148
};
const
int
group_count
=
16
;
int
group_count
=
Ms
.
size
();
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
for
(
int
i
=
0
;
i
<
group_count
;
++
i
)
{
{
Ns
.
push_back
(
768
);
Ms
.
push_back
(
256
+
256
*
i
);
Ks
.
push_back
(
4608
);
Ns
.
push_back
(
128
+
128
*
i
);
Ks
.
push_back
(
128
+
64
*
i
);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideAs
.
push_back
(
std
::
is_same
<
Row
,
ALayout
>::
value
?
Ks
[
i
]
:
Ms
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
StrideBs
.
push_back
(
std
::
is_same
<
Row
,
BLayout
>::
value
?
Ns
[
i
]
:
Ks
[
i
]);
...
...
client_example/2
0
_im
age_to
_col
umn
/CMakeLists.txt
→
client_example/2
2
_im
2col
_col
2im
/CMakeLists.txt
View file @
11001fa3
add_executable
(
client_image_to_column image_to_column.cpp
)
add_executable
(
client_image_to_column image_to_column.cpp
)
target_link_libraries
(
client_image_to_column PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_image_to_column PRIVATE composable_kernel::device_operations
)
add_executable
(
client_column_to_image column_to_image.cpp
)
target_link_libraries
(
client_column_to_image PRIVATE composable_kernel::device_operations
)
client_example/22_im2col_col2im/column_to_image.cpp
0 → 100644
View file @
11001fa3
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ImageLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
32
;
// batch size
static
constexpr
ck
::
index_t
C
=
32
;
// input channel (per group)
static
constexpr
ck
::
index_t
Y
=
3
;
// filter H
static
constexpr
ck
::
index_t
X
=
3
;
// filter W
static
constexpr
ck
::
index_t
Hi
=
28
;
// input H
static
constexpr
ck
::
index_t
Wi
=
28
;
// input W
static
constexpr
ck
::
index_t
Ho
=
28
;
// output H
static
constexpr
ck
::
index_t
Wo
=
28
;
// output W
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
array
<
ck
::
index_t
,
2
>
in_spatial_lengths
{
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
2
>
wei_spatial_lengths
{
Y
,
X
};
std
::
array
<
ck
::
index_t
,
2
>
out_spatial_lengths
{
Ho
,
Wo
};
// We have NHWGC in memory space (G is dummy)
// However, CK's API only accept length and stride with order of GNCHW
// Hence, we need to adjust the order of stride
std
::
array
<
ck
::
index_t
,
5
>
image_strides
{
C
,
Hi
*
Wi
*
G
*
C
,
1
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
2
>
gemm_strides
{
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
);
using
namespace
ck
::
conv_tensor_rearrange_op
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceConvTensorRearrange
<
NumDimSpatial
,
ImageLayout
,
InDataType
,
OutDataType
,
ColumnToImage
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
N
,
C
,
in_spatial_lengths
,
out_spatial_lengths
,
wei_spatial_lengths
,
image_strides
,
gemm_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
+
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
avg_time
<
best_avg_time
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
out
.
GetDeviceBuffer
(),
N
,
C
,
in_spatial_lengths
,
out_spatial_lengths
,
wei_spatial_lengths
,
image_strides
,
gemm_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
client_example/2
0
_im
age_to
_col
umn
/image_to_column.cpp
→
client_example/2
2
_im
2col
_col
2im
/image_to_column.cpp
View file @
11001fa3
...
@@ -9,13 +9,14 @@
...
@@ -9,13 +9,14 @@
#include <vector>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/image_to_column.hpp"
#include "ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
I
n
Layout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
I
mage
Layout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
G
=
1
;
...
@@ -54,8 +55,8 @@ int main()
...
@@ -54,8 +55,8 @@ int main()
// We have NHWGC in memory space (G is dummy)
// We have NHWGC in memory space (G is dummy)
// However, CK's API only accept length and stride with order of GNCHW
// However, CK's API only accept length and stride with order of GNCHW
// Hence, we need to adjust the order of stride
// Hence, we need to adjust the order of stride
std
::
array
<
ck
::
index_t
,
5
>
i
n
_strides
{
C
,
Hi
*
Wi
*
G
*
C
,
1
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
5
>
i
mage
_strides
{
C
,
Hi
*
Wi
*
G
*
C
,
1
,
Wi
*
G
*
C
,
G
*
C
};
std
::
array
<
ck
::
index_t
,
2
>
out
_strides
{
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
gemm
_strides
{
Y
*
X
*
C
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
,
1
};
...
@@ -65,8 +66,13 @@ int main()
...
@@ -65,8 +66,13 @@ int main()
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
G
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
Y
*
X
*
C
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
using
namespace
ck
::
conv_tensor_rearrange_op
;
DeviceImageToColumn
<
NumDimSpatial
,
InLayout
,
InDataType
,
OutDataType
>
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceConvTensorRearrange
<
NumDimSpatial
,
ImageLayout
,
InDataType
,
OutDataType
,
ImageToColumn
>
;
// get device op instances
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
...
@@ -92,8 +98,8 @@ int main()
...
@@ -92,8 +98,8 @@ int main()
in_spatial_lengths
,
in_spatial_lengths
,
out_spatial_lengths
,
out_spatial_lengths
,
wei_spatial_lengths
,
wei_spatial_lengths
,
i
n
_strides
,
i
mage
_strides
,
out
_strides
,
gemm
_strides
,
filter_strides
,
filter_strides
,
filter_dilations
,
filter_dilations
,
input_left_pads
,
input_left_pads
,
...
@@ -148,8 +154,8 @@ int main()
...
@@ -148,8 +154,8 @@ int main()
in_spatial_lengths
,
in_spatial_lengths
,
out_spatial_lengths
,
out_spatial_lengths
,
wei_spatial_lengths
,
wei_spatial_lengths
,
i
n
_strides
,
i
mage
_strides
,
out
_strides
,
gemm
_strides
,
filter_strides
,
filter_strides
,
filter_dilations
,
filter_dilations
,
input_left_pads
,
input_left_pads
,
...
...
example/01_gemm/CMakeLists.txt
View file @
11001fa3
...
@@ -67,13 +67,20 @@ add_example_executable(example_gemm_xdl_streamk gemm_xdl_streamk.cpp)
...
@@ -67,13 +67,20 @@ add_example_executable(example_gemm_xdl_streamk gemm_xdl_streamk.cpp)
if
(
GPU_TARGETS MATCHES
"gfx940"
OR GPU_TARGETS MATCHES
"gfx941"
OR GPU_TARGETS MATCHES
"gfx942"
)
if
(
GPU_TARGETS MATCHES
"gfx940"
OR GPU_TARGETS MATCHES
"gfx941"
OR GPU_TARGETS MATCHES
"gfx942"
)
add_example_executable
(
example_gemm_xdl_f8 gemm_xdl_f8.cpp
)
add_example_executable
(
example_gemm_xdl_f
p
8 gemm_xdl_f
p
8.cpp
)
if
(
result EQUAL 0
)
if
(
result EQUAL 0
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_f8
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_f
p
8
)
endif
()
endif
()
endif
()
endif
()
add_example_executable
(
example_gemm_xdl_fp16_f8 gemm_xdl_fp16_f8.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx940"
OR GPU_TARGETS MATCHES
"gfx941"
OR GPU_TARGETS MATCHES
"gfx942"
)
add_example_executable
(
example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp
)
if
(
result EQUAL 0
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8_bf8
)
endif
()
endif
()
add_example_executable
(
example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp
)
if
(
result EQUAL 0
)
if
(
result EQUAL 0
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_f8
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_f
p
8
)
endif
()
endif
()
Prev
1
2
3
4
5
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment