Commit 03059eb0 authored by Chao Liu's avatar Chao Liu
Browse files

adding c shuffle

parent 8c85a3e4
...@@ -672,7 +672,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 ...@@ -672,7 +672,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks); c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
} }
} }
}; // namespace ck };
} // namespace ck } // namespace ck
#endif #endif
...@@ -649,7 +649,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5 ...@@ -649,7 +649,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5
c1_grid_buf); c1_grid_buf);
} }
} }
}; // namespace ck };
} // namespace ck } // namespace ck
#endif #endif
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V2_HPP #ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R1_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V2_HPP #define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R1_HPP
#include "common_header.hpp" #include "common_header.hpp"
#include "tensor_descriptor.hpp" #include "tensor_descriptor.hpp"
...@@ -608,169 +608,5 @@ struct ThreadwiseTensorSliceTransfer_v3r1 ...@@ -608,169 +608,5 @@ struct ThreadwiseTensorSliceTransfer_v3r1
DstCoord dst_coord_; DstCoord dst_coord_;
}; };
// Assume:
// 1. src:
// 1. SrcDesc is known at compile-time
// 2. SrcBuffer is DynamicBuffer
// 3. src_ref_idx is known at run-time
// 4. SrcRefToOriginDisplacement is known at compile-time
// 5. use #-step
// 2. dst:
// 1. DstDesc is known at compile-time
// 2. DstBuffer is StaticBuffer
// 3. DstOriginIdx is known at compile-time
// 4. use direct address calculation
// 3. vector access on src
template <typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename SliceLengths,
typename DimAccessOrder,
typename SrcVectorTensorLengths,
typename SrcVectorTensorContiguousDimOrder,
typename enable_if<SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseTensorSliceTransfer_v4r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
using SrcCoord = decltype(make_tensor_coordinate(SrcDesc{}, Index{}));
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
__device__ constexpr ThreadwiseTensorSliceTransfer_v4r1(const Index& src_ref_idx)
: src_ref_coord_(make_tensor_coordinate(SrcDesc{}, src_ref_idx))
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_for<0, nDim, 1>{}([](auto i) {
static_assert(SliceLengths::At(i) % SrcVectorTensorLengths::At(i) == 0, "wrong!");
});
}
template <typename SrcRefToOriginDisplacement,
typename DstOriginIdx,
typename SrcBuffer,
typename DstBuffer>
__device__ void Run(const SrcDesc&,
const SrcRefToOriginDisplacement&,
const SrcBuffer& src_buf,
const DstDesc&,
const DstOriginIdx&,
DstBuffer& dst_buf) const
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value &&
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
static_assert(DstBuffer::IsStaticBuffer(), "wrong! DstBuffer need to be StaticBuffer");
static_assert(is_known_at_compile_time<remove_cvref_t<SrcRefToOriginDisplacement>>::value &&
is_known_at_compile_time<remove_cvref_t<DstOriginIdx>>::value,
"wrong! SrcOriginToRefDistance and DstOriginToRefDistance need to be known "
"at compile-time");
// SrcDesc and DstDesc are known at compile-time
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
// SrcOriginToRefDisttance and DstOriginToRefDistance are known at compile-time
constexpr auto src_ref_to_origin_disp_idx = to_multi_index(SrcRefToOriginDisplacement{});
constexpr auto dst_origin_idx = to_multi_index(DstOriginIdx{});
// tensor descriptor for src_vector
constexpr auto src_vector_tensor_lengths = SrcVectorTensorLengths{};
constexpr auto src_vector_tensor_strides = container_reorder_given_old2new(
container_reverse_exclusive_scan(
container_reorder_given_new2old(src_vector_tensor_lengths,
SrcVectorTensorContiguousDimOrder{}),
math::multiplies{},
I1),
SrcVectorTensorContiguousDimOrder{});
constexpr auto src_vector_desc =
make_naive_tensor_descriptor(sequence_to_tuple_of_number(src_vector_tensor_lengths),
sequence_to_tuple_of_number(src_vector_tensor_strides));
// access order and lengths
constexpr auto access_lengths = SliceLengths{} / src_vector_tensor_lengths;
constexpr auto dim_access_order = DimAccessOrder{};
constexpr auto ordered_access_lengths =
container_reorder_given_new2old(access_lengths, dim_access_order);
static_ford<decltype(ordered_access_lengths)>{}([&](auto ordered_access_idx) {
// position in slice window
constexpr auto data_to_origin_disp_idx =
ordered_access_idx.ReorderGivenOld2New(dim_access_order) *
src_vector_tensor_lengths;
// src coordinate at starting point of src_vector
constexpr auto src_ref_to_data_disp_idx =
src_ref_to_origin_disp_idx + data_to_origin_disp_idx;
constexpr auto src_ref_to_data_disp_coord_step =
make_tensor_coordinate_step(src_desc, src_ref_to_data_disp_idx);
auto src_data_coord = src_ref_coord_;
move_tensor_coordinate(src_desc, src_data_coord, src_ref_to_data_disp_coord_step);
vector_type_maker_t<SrcData, src_vector_desc.GetElementSpaceSize()> src_vector;
using src_vector_t = typename decltype(src_vector)::type;
const bool is_src_valid = coordinate_has_valid_offset_assuming_visible_index_is_valid(
src_desc, src_data_coord);
// copy data from src_buf into src_vector
src_vector.template AsType<src_vector_t>()(I0) =
src_buf.template Get<src_vector_t>(src_data_coord.GetOffset(), is_src_valid);
// copy data from src_vector into dst_buf (also cast from SrcData to DstData)
static_ford<SrcVectorTensorLengths>{}([&](auto src_vector_idx_) {
constexpr auto src_vector_idx = to_multi_index(src_vector_idx_);
constexpr index_t src_vector_offset =
src_vector_desc.CalculateOffset(src_vector_idx);
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_origin_idx + data_to_origin_disp_idx + src_vector_idx);
dst_buf(Number<dst_offset>{}) = type_convert<DstData>(
src_vector.template AsType<DstData>()[Number<src_vector_offset>{}]);
});
});
}
template <typename SrcSliceMoveStepIdx>
__device__ void MoveSrcSliceWindow(const SrcDesc&,
const SrcSliceMoveStepIdx& src_slice_move_step_idx)
{
constexpr auto src_desc = SrcDesc{};
const auto src_slice_move_step_iter =
make_tensor_coordinate_step(src_desc, to_multi_index(src_slice_move_step_idx));
move_tensor_coordinate(SrcDesc{}, src_ref_coord_, src_slice_move_step_iter);
}
private:
SrcCoord src_ref_coord_;
};
} // namespace ck } // namespace ck
#endif #endif
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V4R1_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V4R1_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// Assume:
// 1. src:
// 1. SrcDesc is known at compile-time
// 2. SrcBuffer is DynamicBuffer
// 3. src_ref_idx is known at run-time
// 4. SrcRefToOriginDisplacement is known at compile-time
// 5. use #-step
// 2. dst:
// 1. DstDesc is known at compile-time
// 2. DstBuffer is StaticBuffer
// 3. DstOriginIdx is known at compile-time
// 4. use direct address calculation
// 3. vector access on src
template <typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename SliceLengths,
typename DimAccessOrder,
typename SrcVectorTensorLengths,
typename SrcVectorTensorContiguousDimOrder,
typename enable_if<SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
bool>::type = false>
struct ThreadwiseTensorSliceTransfer_v4r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
using SrcCoord = decltype(make_tensor_coordinate(SrcDesc{}, Index{}));
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
__device__ constexpr ThreadwiseTensorSliceTransfer_v4r1(const Index& src_ref_idx)
: src_ref_coord_(make_tensor_coordinate(SrcDesc{}, src_ref_idx))
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_for<0, nDim, 1>{}([](auto i) {
static_assert(SliceLengths::At(i) % SrcVectorTensorLengths::At(i) == 0, "wrong!");
});
}
template <typename SrcRefToOriginDisplacement,
typename DstOriginIdx,
typename SrcBuffer,
typename DstBuffer>
__device__ void Run(const SrcDesc&,
const SrcRefToOriginDisplacement&,
const SrcBuffer& src_buf,
const DstDesc&,
const DstOriginIdx&,
DstBuffer& dst_buf) const
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! SrcDesc and DstDesc need to known at compile-time");
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value &&
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
static_assert(DstBuffer::IsStaticBuffer(), "wrong! DstBuffer need to be StaticBuffer");
static_assert(is_known_at_compile_time<remove_cvref_t<SrcRefToOriginDisplacement>>::value &&
is_known_at_compile_time<remove_cvref_t<DstOriginIdx>>::value,
"wrong! SrcOriginToRefDistance and DstOriginToRefDistance need to be known "
"at compile-time");
// SrcDesc and DstDesc are known at compile-time
constexpr auto src_desc = remove_cvref_t<SrcDesc>{};
constexpr auto dst_desc = remove_cvref_t<DstDesc>{};
// SrcOriginToRefDisttance and DstOriginToRefDistance are known at compile-time
constexpr auto src_ref_to_origin_disp_idx = to_multi_index(SrcRefToOriginDisplacement{});
constexpr auto dst_origin_idx = to_multi_index(DstOriginIdx{});
// tensor descriptor for src_vector
constexpr auto src_vector_tensor_lengths = SrcVectorTensorLengths{};
constexpr auto src_vector_tensor_strides = container_reorder_given_old2new(
container_reverse_exclusive_scan(
container_reorder_given_new2old(src_vector_tensor_lengths,
SrcVectorTensorContiguousDimOrder{}),
math::multiplies{},
I1),
SrcVectorTensorContiguousDimOrder{});
constexpr auto src_vector_desc =
make_naive_tensor_descriptor(sequence_to_tuple_of_number(src_vector_tensor_lengths),
sequence_to_tuple_of_number(src_vector_tensor_strides));
// access order and lengths
constexpr auto access_lengths = SliceLengths{} / src_vector_tensor_lengths;
constexpr auto dim_access_order = DimAccessOrder{};
constexpr auto ordered_access_lengths =
container_reorder_given_new2old(access_lengths, dim_access_order);
static_ford<decltype(ordered_access_lengths)>{}([&](auto ordered_access_idx) {
// position in slice window
constexpr auto data_to_origin_disp_idx =
ordered_access_idx.ReorderGivenOld2New(dim_access_order) *
src_vector_tensor_lengths;
// src coordinate at starting point of src_vector
constexpr auto src_ref_to_data_disp_idx =
src_ref_to_origin_disp_idx + data_to_origin_disp_idx;
constexpr auto src_ref_to_data_disp_coord_step =
make_tensor_coordinate_step(src_desc, src_ref_to_data_disp_idx);
auto src_data_coord = src_ref_coord_;
move_tensor_coordinate(src_desc, src_data_coord, src_ref_to_data_disp_coord_step);
vector_type_maker_t<SrcData, src_vector_desc.GetElementSpaceSize()> src_vector;
using src_vector_t = typename decltype(src_vector)::type;
const bool is_src_valid = coordinate_has_valid_offset_assuming_visible_index_is_valid(
src_desc, src_data_coord);
// copy data from src_buf into src_vector
src_vector.template AsType<src_vector_t>()(I0) =
src_buf.template Get<src_vector_t>(src_data_coord.GetOffset(), is_src_valid);
// copy data from src_vector into dst_buf (also cast from SrcData to DstData)
static_ford<SrcVectorTensorLengths>{}([&](auto src_vector_idx_) {
constexpr auto src_vector_idx = to_multi_index(src_vector_idx_);
constexpr index_t src_vector_offset =
src_vector_desc.CalculateOffset(src_vector_idx);
constexpr index_t dst_offset = dst_desc.CalculateOffset(
dst_origin_idx + data_to_origin_disp_idx + src_vector_idx);
dst_buf(Number<dst_offset>{}) = type_convert<DstData>(
src_vector.template AsType<DstData>()[Number<src_vector_offset>{}]);
});
});
}
template <typename SrcSliceMoveStepIdx>
__device__ void MoveSrcSliceWindow(const SrcDesc&,
const SrcSliceMoveStepIdx& src_slice_move_step_idx)
{
constexpr auto src_desc = SrcDesc{};
const auto src_slice_move_step_iter =
make_tensor_coordinate_step(src_desc, to_multi_index(src_slice_move_step_idx));
move_tensor_coordinate(SrcDesc{}, src_ref_coord_, src_slice_move_step_iter);
}
private:
SrcCoord src_ref_coord_;
};
} // namespace ck
#endif
# Instructions for ```conv2d_fwd_xdl``` Example
## Docker script
```bash
docker run \
-it \
--rm \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```conv2d_fwd_xdl```
```bash
mkdir build && cd build
```
```bash
# Need to specify target ID, example below is gfx908
cmake \
-D BUILD_DEV=OFF \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 " \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
..
```
```bash
make -j conv2d_fwd_xdl
```
## Run ```conv2d_fwd_xdl```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv2d_fwd_xdl 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.43206 ms, 102.486 TFlops, 232.947 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_operation/include/device_conv2d_fwd_xdl_output_shuffle_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
using DeviceConvFwdInstance = ck::tensor_operation::device::
DeviceConv2dFwdXdl_Output_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
//##| InData| WeiData| OutData| AccData| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//##| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
//##| | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
//##| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<InDataType, WeiDataType, OutDataType, AccDataType, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
// clang-format on
template <typename TIn,
typename TWei,
typename TOut,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp>
void host_verify(const Tensor<TIn>& in,
const Tensor<TWei>& wei,
Tensor<TOut>& out,
const std::vector<ck::index_t>& conv_strides,
const std::vector<ck::index_t>& conv_dilations,
const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>&,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
double v = 0;
for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
{
for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
{
int hi = ho * conv_strides[0] + y * conv_dilations[0] - in_left_pads[0];
for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
{
int wi = wo * conv_strides[1] + x * conv_dilations[1] - in_left_pads[1];
if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in.mDesc.GetLengths()[3])
{
v += in_element_op(static_cast<const double>(in(n, c, hi, wi))) *
wei_element_op(static_cast<const double>(wei(k, c, y, x)));
}
}
}
}
out(n, k, ho, wo) = out_element_op(v);
};
make_ParallelTensorFunctor(f_nchw,
out.mDesc.GetLengths()[0],
out.mDesc.GetLengths()[1],
out.mDesc.GetLengths()[2],
out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
}
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 19)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t H,
std::size_t W,
auto layout) {
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
// do GEMM
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{{Hi, Wi}},
std::vector<ck::index_t>{{Y, X}},
std::vector<ck::index_t>{{Ho, Wo}},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
host_verify(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
}
}
...@@ -14,17 +14,20 @@ include_directories(BEFORE ...@@ -14,17 +14,20 @@ include_directories(BEFORE
set(GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp) set(GEMM_XDL_SOURCE 1_gemm_xdl/gemm_xdl.cpp)
set(GEMM_XDL_BIAS_RELU_ADD_SOURCE 3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp) set(GEMM_XDL_BIAS_RELU_ADD_SOURCE 3_gemm_xdl_bias_relu_add/gemm_xdl_bias_relu_add.cpp)
set(CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp) set(CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp)
set(CONV2D_FWD_XDL_OUTPUT_SHUFFLE_SOURCE 4_conv2d_fwd_xdl_output_shuffle/conv2d_fwd_xdl_output_shuffle.cpp)
set(CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp) set(CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp)
set(CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp) set(CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp)
add_executable(gemm_xdl ${GEMM_XDL_SOURCE}) add_executable(gemm_xdl ${GEMM_XDL_SOURCE})
add_executable(gemm_xdl_bias_relu_add ${GEMM_XDL_BIAS_RELU_ADD_SOURCE}) add_executable(gemm_xdl_bias_relu_add ${GEMM_XDL_BIAS_RELU_ADD_SOURCE})
add_executable(conv2d_fwd_xdl ${CONV2D_FWD_XDL_SOURCE}) add_executable(conv2d_fwd_xdl ${CONV2D_FWD_XDL_SOURCE})
add_executable(conv2d_fwd_xdl_output_shuffle ${CONV2D_FWD_XDL_OUTPUT_SHUFFLE_SOURCE})
add_executable(conv2d_fwd_xdl_bias_relu ${CONV2D_FWD_XDL_BIAS_RELU_SOURCE}) add_executable(conv2d_fwd_xdl_bias_relu ${CONV2D_FWD_XDL_BIAS_RELU_SOURCE})
add_executable(conv2d_fwd_xdl_bias_relu_add ${CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE}) add_executable(conv2d_fwd_xdl_bias_relu_add ${CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE})
target_link_libraries(gemm_xdl PRIVATE host_tensor) target_link_libraries(gemm_xdl PRIVATE host_tensor)
target_link_libraries(gemm_xdl_bias_relu_add PRIVATE host_tensor) target_link_libraries(gemm_xdl_bias_relu_add PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl PRIVATE host_tensor) target_link_libraries(conv2d_fwd_xdl PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_output_shuffle PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_bias_relu PRIVATE host_tensor) target_link_libraries(conv2d_fwd_xdl_bias_relu PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor) target_link_libraries(conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment