Commit 028171e9 authored by Chao Liu's avatar Chao Liu
Browse files

adding group

parent 3549e344
add_example_executable(example_conv2d_fwd_bias_relu_xdl_fp16 conv2d_fwd_bias_relu_xdl_fp16.cpp)
target_link_libraries(example_conv2d_fwd_bias_relu_xdl_fp16 PRIVATE utility)
add_example_executable(example_convnd_fwd_bias_relu_xdl_fp16 convnd_fwd_bias_relu_xdl_fp16.cpp)
target_link_libraries(example_convnd_fwd_bias_relu_xdl_fp16 PRIVATE utility)
......@@ -101,7 +101,7 @@ void print_helper_msg()
<< std::endl;
}
ck::utils::conv::ConvParam parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[])
ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, char* const argv[])
{
const ck::index_t N = std::stoi(argv[arg_idx++]);
const ck::index_t K = std::stoi(argv[arg_idx++]);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< "arg4: N spatial dimensions (default 2)\n"
<< "Following arguments (depending on number of spatial dims):\n"
<< " G, N, K, C, \n"
<< " <filter spatial dimensions>, (ie Y, X for 2D)\n"
<< " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
<< " <strides>, (ie Sy, Sx for 2D)\n"
<< " <dilations>, (ie Dy, Dx for 2D)\n"
<< " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< std::endl;
}
ck::utils::conv::ConvParam parse_conv_param(int num_dim_spatial, int arg_idx, char* const argv[])
{
const ck::index_t G = std::stoi(argv[arg_idx++]);
const ck::index_t N = std::stoi(argv[arg_idx++]);
const ck::index_t K = std::stoi(argv[arg_idx++]);
const ck::index_t C = std::stoi(argv[arg_idx++]);
std::vector<ck::index_t> filter_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> input_spatial_lengths(num_dim_spatial);
std::vector<ck::index_t> conv_filter_strides(num_dim_spatial);
std::vector<ck::index_t> conv_filter_dilations(num_dim_spatial);
std::vector<ck::index_t> input_left_pads(num_dim_spatial);
std::vector<ck::index_t> input_right_pads(num_dim_spatial);
for(int i = 0; i < num_dim_spatial; ++i)
{
filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_left_pads[i] = std::stoi(argv[arg_idx++]);
}
for(int i = 0; i < num_dim_spatial; ++i)
{
input_right_pads[i] = std::stoi(argv[arg_idx++]);
}
return ck::utils::conv::ConvParam{num_dim_spatial,
G,
N,
K,
C,
filter_spatial_lengths,
input_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads};
}
// FIXME: current implementation only support NCHW/NHWC layout
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
int run_conv_fwd_bias(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& bias_g_n_k_wos_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> bias(bias_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "bias: " << bias.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpace());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
bias_device_buf.ToDevice(bias.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(bias_g_n_k_wos_desc.GetLengths(), d_g_n_k_wos_lengths);
copy(bias_g_n_k_wos_desc.GetStrides(), d_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do GEMM
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{bias_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d_g_n_k_wos_lengths}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d_g_n_k_wos_strides}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
Tensor<OutDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// TODO: implement elementwise operation for host
out_host.ForEach(
[&](auto&, auto idx) { out_element_op(out_host(idx), c_host(idx), bias(idx)); });
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_bias_common.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd_multiple_d_xdl_cshuffle.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using BiasDataType = ck::half_t;
using OutDataType = ck::half_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddRelu;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename OutLayout>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::DeviceConvFwdMultipleD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<BiasDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
namespace ctc = ck::tensor_layout::convolution;
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = parse_conv_param(num_dim_spatial, 5, argv);
}
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{};
if(conv_param.num_dim_spatial_ == 1)
{
using InLayout = ctc::G_NW_C;
using WeiLayout = ctc::G_K_X_C;
using BiasLayout = ctc::G_NW_K;
using OutLayout = ctc::G_NW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.C_, conv_param.input_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.K_, conv_param.C_, conv_param.filter_spatial_lengths_[0]},
{
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.G_ * conv_param.C_, // k
1, // c
conv_param.G_ * conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
0, // k
1, // c
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_, conv_param.N_, conv_param.K_, conv_param.output_spatial_lengths_[0]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.G_ * conv_param.K_ // wo
});
return run_conv_fwd_bias<
1,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<1, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 2)
{
using InLayout = ctc::G_NHW_C;
using WeiLayout = ctc::G_K_YX_C;
using BiasLayout = ctc::G_NHW_K;
using OutLayout = ctc::G_NHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1]},
{
conv_param.output_spatial_lengths_[0] * conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1]},
{
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.G_ * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.G_ * conv_param.C_, // y
conv_param.G_ * conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
0, // n
1, // k
0, // ho
0 // wo
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_conv_fwd_bias<
2,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<2, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
else if(conv_param.num_dim_spatial_ == 3)
{
using InLayout = ctc::G_NDHW_C;
using WeiLayout = ctc::G_K_ZYX_C;
using BiasLayout = ctc::G_NDHW_K;
using OutLayout = ctc::G_NDHW_K;
const auto in_g_n_c_wis_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.C_,
conv_param.input_spatial_lengths_[0],
conv_param.input_spatial_lengths_[1],
conv_param.input_spatial_lengths_[2]},
{
conv_param.output_spatial_lengths_[0] * conv_param.C_, // g
conv_param.input_spatial_lengths_[0] * conv_param.input_spatial_lengths_[1] *
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // n
1, // c
conv_param.input_spatial_lengths_[1] * conv_param.input_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // di
conv_param.input_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // hi
conv_param.G_ * conv_param.C_ // wi
});
const auto wei_g_k_c_xs_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.K_,
conv_param.C_,
conv_param.filter_spatial_lengths_[0],
conv_param.filter_spatial_lengths_[1],
conv_param.filter_spatial_lengths_[2]},
{
conv_param.C_, // g
conv_param.filter_spatial_lengths_[0] * conv_param.filter_spatial_lengths_[1] *
conv_param.filter_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // k
1, // c
conv_param.filter_spatial_lengths_[1] * conv_param.filter_spatial_lengths_[2] *
conv_param.G_ * conv_param.C_, // z
conv_param.filter_spatial_lengths_[2] * conv_param.G_ * conv_param.C_, // y
conv_param.G_ * conv_param.C_ // x
});
const auto bias_g_n_k_wos_desc =
HostTensorDescriptor({conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
0, // n
1, // k
0, // z
0, // y
0 // x
});
const auto out_g_n_k_wos_desc = HostTensorDescriptor(
{conv_param.G_,
conv_param.N_,
conv_param.K_,
conv_param.output_spatial_lengths_[0],
conv_param.output_spatial_lengths_[1],
conv_param.output_spatial_lengths_[2]},
{
conv_param.K_, // g
conv_param.output_spatial_lengths_[0] * conv_param.output_spatial_lengths_[1] *
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // n
1, // k
conv_param.output_spatial_lengths_[1] * conv_param.output_spatial_lengths_[2] *
conv_param.G_ * conv_param.K_, // do
conv_param.output_spatial_lengths_[2] * conv_param.G_ * conv_param.K_, // ho
conv_param.G_ * conv_param.K_ // wo
});
return run_conv_fwd_bias<
3,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceConvNDFwdInstance<3, InLayout, WeiLayout, BiasLayout, OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
bias_g_n_k_wos_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op,
out_element_op);
}
return 0;
}
......@@ -28,17 +28,17 @@ namespace host {
// operation.
// @tparam WeiElementwiseOperation Functor for weights tensor elementwise
// operation.
// @tparam NumDimSpatial Number of spatial dimensions.
// @tparam NDimSpatial Number of spatial dimensions.
//
// tensor descriptor in GNCHW/GKCXY/GNKHW dimensional order
template <ck::index_t NumDimSpatial,
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
typename std::enable_if<NumDimSpatial >= 1 && NumDimSpatial <= 3, bool>::type = false>
typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false>
struct ReferenceConvFwd : public device::BaseOperator
{
// Argument
......@@ -87,7 +87,14 @@ struct ReferenceConvFwd : public device::BaseOperator
float Run(const Argument& arg)
{
if constexpr(NumDimSpatial == 1)
if(!(arg.input_.GetNumOfDimension() == NDimSpatial + 3 &&
arg.weight_.GetNumOfDimension() == NDimSpatial + 3 &&
arg.output_.GetNumOfDimension() == NDimSpatial + 3))
{
std::throw("wrong! inconsistent dimension");
}
if constexpr(NDimSpatial == 1)
{
auto func = [&](auto g, auto n, auto k, auto wo) {
float v_acc = 0;
......@@ -133,7 +140,7 @@ struct ReferenceConvFwd : public device::BaseOperator
return 0;
}
else if constexpr(NumDimSpatial == 2)
else if constexpr(NDimSpatial == 2)
{
auto func = [&](auto g, auto n, auto k, auto ho, auto wo) {
float v_acc = 0;
......@@ -190,7 +197,7 @@ struct ReferenceConvFwd : public device::BaseOperator
return 0;
}
else if constexpr(NumDimSpatial == 3)
else if constexpr(NDimSpatial == 3)
{
auto func = [&](auto g, auto n, auto k, auto d_o, auto ho, auto wo) {
float v_acc = 0;
......@@ -277,7 +284,7 @@ struct ReferenceConvFwd : public device::BaseOperator
bool IsSupportedArgument(const device::BaseArgument*) override
{
return NumDimSpatial >= 1 && NumDimSpatial <= 3;
return NDimSpatial >= 1 && NDimSpatial <= 3;
}
static auto MakeArgument(const Tensor<InDataType>& input,
......
......@@ -84,7 +84,7 @@ std::vector<std::size_t> get_layout_transpose_gnchw_to_old()
// regardless of physical layout
template <typename InLayout>
HostTensorDescriptor
make_input_host_tensor_descriptor_packed(const ck::utils::conv::ConvParam& param)
make_input_host_tensor_descriptor_g_n_c_wis_packed(const ck::utils::conv::ConvParam& param)
{
std::vector<std::size_t> physical_lengths;
......@@ -140,7 +140,7 @@ make_input_host_tensor_descriptor_packed(const ck::utils::conv::ConvParam& param
// regardless of physical layout
template <typename WeiLayout>
HostTensorDescriptor
make_weight_host_tensor_descriptor_packed(const ck::utils::conv::ConvParam& param)
make_weight_host_tensor_descriptor_g_k_c_xs_packed(const ck::utils::conv::ConvParam& param)
{
std::vector<std::size_t> physical_lengths;
......@@ -195,7 +195,7 @@ make_weight_host_tensor_descriptor_packed(const ck::utils::conv::ConvParam& para
// regardless of physical layout
template <typename OutLayout>
HostTensorDescriptor
make_output_host_tensor_descriptor_packed(const ck::utils::conv::ConvParam& param)
make_output_host_tensor_descriptor_g_n_k_wos_packed(const ck::utils::conv::ConvParam& param)
{
std::vector<std::size_t> physical_lengths;
......
......@@ -75,13 +75,19 @@ struct HostTensorDescriptor
{
HostTensorDescriptor() = default;
template <typename X>
HostTensorDescriptor(const std::vector<X>& lens);
void CalculateStrides();
template <typename X, typename Y>
HostTensorDescriptor(const std::vector<X>& lens, const std::vector<Y>& strides);
template <typename X>
HostTensorDescriptor(const std::initializer_list<X>& lens) : mLens(lens.begin(), lens.end())
{
this->CalculateStrides();
}
void CalculateStrides();
template <typename X>
HostTensorDescriptor(const std::vector<X>& lens) : mLens(lens.begin(), lens.end())
{
this->CalculateStrides();
}
template <typename Range>
HostTensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
......@@ -89,6 +95,19 @@ struct HostTensorDescriptor
this->CalculateStrides();
}
template <typename X, typename Y>
HostTensorDescriptor(const std::initializer_list<X>& lens,
const std::initializer_list<Y>& strides)
: mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
{
}
template <typename X, typename Y>
HostTensorDescriptor(const std::vector<X>& lens, const std::vector<Y>& strides)
: mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
{
}
template <typename Range1, typename Range2>
HostTensorDescriptor(const Range1& lens, const Range2& strides)
: mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
......@@ -97,7 +116,7 @@ struct HostTensorDescriptor
std::size_t GetNumOfDimension() const;
std::size_t GetElementSize() const;
std::size_t GetElementSpace() const;
std::size_t GetElementSpaceSize() const;
const std::vector<std::size_t>& GetLengths() const;
const std::vector<std::size_t>& GetStrides() const;
......@@ -219,22 +238,22 @@ template <typename T>
struct Tensor
{
template <typename X>
Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
{
}
template <typename X>
Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpaceSize())
{
}
template <typename X, typename Y>
Tensor(std::vector<X> lens, std::vector<Y> strides)
: mDesc(lens, strides), mData(mDesc.GetElementSpace())
: mDesc(lens, strides), mData(mDesc.GetElementSpaceSize())
{
}
Tensor(const HostTensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}
Tensor(const HostTensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpaceSize()) {}
template <typename OutT>
Tensor<OutT> CopyAsType()
......@@ -260,6 +279,12 @@ struct Tensor
const std::vector<std::size_t>& GetStrides() const { return mDesc.GetStrides(); }
std::size_t GetNumOfDimension() const { return mDesc.GetNumOfDimension(); }
std::size_t GetElementSize() const { return mDesc.GetElementSize(); }
std::size_t GetElementSpaceSize() const { return mDesc.GetElementSpaceSize(); }
void SetZero()
{
for(auto& v : mData)
......@@ -409,20 +434,6 @@ struct Tensor
std::vector<T> mData;
};
template <typename X>
HostTensorDescriptor::HostTensorDescriptor(const std::vector<X>& lens)
: mLens(lens.begin(), lens.end())
{
this->CalculateStrides();
}
template <typename X, typename Y>
HostTensorDescriptor::HostTensorDescriptor(const std::vector<X>& lens,
const std::vector<Y>& strides)
: mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
{
}
#if 1
// FIXME: remove
template <typename T>
......
......@@ -26,7 +26,7 @@ std::size_t HostTensorDescriptor::GetElementSize() const
mLens.begin(), mLens.end(), std::size_t{1}, std::multiplies<std::size_t>());
}
std::size_t HostTensorDescriptor::GetElementSpace() const
std::size_t HostTensorDescriptor::GetElementSpaceSize() const
{
std::size_t space = 1;
for(std::size_t i = 0; i < mLens.size(); ++i)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment