Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
00af2988
Commit
00af2988
authored
Dec 01, 2022
by
Po-Yen, Chen
Browse files
Merge branch 'develop' into feature/restruct-ckprofiler
parents
9a2607d6
ad541ad6
Changes
51
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1658 additions
and
219 deletions
+1658
-219
client_example/09_quantization/CMakeLists.txt
client_example/09_quantization/CMakeLists.txt
+6
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
...tization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
+205
-0
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
...antization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
+1
-1
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
...le/09_quantization/conv2d_fwd_perchannel_quantization.cpp
+198
-0
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
...mple/09_quantization/conv2d_fwd_perlayer_quantization.cpp
+1
-1
client_example/13_batchnorm/CMakeLists.txt
client_example/13_batchnorm/CMakeLists.txt
+2
-0
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
+201
-0
example/14_gemm_quantization/CMakeLists.txt
example/14_gemm_quantization/CMakeLists.txt
+2
-0
example/14_gemm_quantization/gemm_xdl_bias_relu_quantization_int8.cpp
...emm_quantization/gemm_xdl_bias_relu_quantization_int8.cpp
+235
-0
example/14_gemm_quantization/gemm_xdl_quantization_int8.cpp
example/14_gemm_quantization/gemm_xdl_quantization_int8.cpp
+207
-0
example/14_gemm_xdl_quantization/CMakeLists.txt
example/14_gemm_xdl_quantization/CMakeLists.txt
+0
-1
example/34_batchnorm/batchnorm_backward_nhwc.cpp
example/34_batchnorm/batchnorm_backward_nhwc.cpp
+44
-40
example/44_conv2d_fwd_quantization/CMakeLists.txt
example/44_conv2d_fwd_quantization/CMakeLists.txt
+1
-0
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
...conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
+342
-0
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
...n/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
+22
-22
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
...uantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
+6
-5
include/ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp
...tensor_operation/gpu/device/device_batchnorm_backward.hpp
+31
-5
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp
...ration/gpu/device/impl/device_batchnorm_backward_impl.hpp
+52
-44
include/ck/tensor_operation/gpu/element/quantization_operation.hpp
...k/tensor_operation/gpu/element/quantization_operation.hpp
+57
-19
include/ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_reduce_second_half_batchnorm_backward_final.hpp
...ultiblock_reduce_second_half_batchnorm_backward_final.hpp
+45
-81
No files found.
client_example/09_quantization/CMakeLists.txt
View file @
00af2988
add_executable
(
client_conv2d_fwd_bias_relu_perchannel_quantization conv2d_fwd_bias_relu_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_bias_relu_perlayer_quantization conv2d_fwd_bias_relu_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_bias_relu_perlayer_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_perchannel_quantization conv2d_fwd_perchannel_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perchannel_quantization PRIVATE composable_kernel::device_operations
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
add_executable
(
client_conv2d_fwd_perlayer_quantization conv2d_fwd_perlayer_quantization.cpp
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_conv2d_fwd_perlayer_quantization PRIVATE composable_kernel::device_operations
)
client_example/09_quantization/conv2d_fwd_bias_relu_perchannel_quantization.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_bias_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
bias_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
bias_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
bias
.
GetDeviceBuffer
(),
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
bias_lengths
,
requant_scale_lengths
},
{
bias_strides
,
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_bias_relu_perlayer_quantization.cpp
View file @
00af2988
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include <vector>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/library/tensor_operation_instance/gpu/
quantization/
grouped_convolution_bias_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
client_example/09_quantization/conv2d_fwd_perchannel_quantization.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/quantization/grouped_convolution_forward_perchannel_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
RequantScaleDataType
=
float
;
using
OutDataType
=
int8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
4
;
static
constexpr
ck
::
index_t
K
=
64
;
static
constexpr
ck
::
index_t
C
=
32
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
71
;
static
constexpr
ck
::
index_t
Wi
=
71
;
static
constexpr
ck
::
index_t
Ho
=
36
;
static
constexpr
ck
::
index_t
Wo
=
36
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
5
>
in_lengths
{
G
,
N
,
C
,
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
5
>
in_strides
{
N
*
Hi
*
Wi
*
C
,
Hi
*
Wi
*
C
,
1
,
Wi
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
weight_lengths
{
G
,
K
,
C
,
Y
,
X
};
std
::
array
<
ck
::
index_t
,
5
>
weight_strides
{
K
*
Y
*
X
*
C
,
Y
*
X
*
C
,
1
,
X
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_lengths
{
G
,
N
,
K
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
requant_scale_strides
{
K
,
0
,
1
,
0
,
0
};
std
::
array
<
ck
::
index_t
,
5
>
out_lengths
{
G
,
N
,
C
,
Ho
,
Wo
};
std
::
array
<
ck
::
index_t
,
5
>
out_strides
{
N
*
Ho
*
Wo
*
C
,
Ho
*
Wo
*
C
,
1
,
Wo
*
C
,
C
};
std
::
array
<
ck
::
index_t
,
2
>
in_left_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
in_right_pad
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
2
>
conv_strides
{
2
,
2
};
std
::
array
<
ck
::
index_t
,
2
>
conv_dilations
{
1
,
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
requant_scale
(
sizeof
(
RequantScaleDataType
)
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<
RequantScaleDataType
>
,
OutDataType
,
PassThrough
,
PassThrough
,
OutElementOp
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{
requant_scale
.
GetDeviceBuffer
()},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{
requant_scale_lengths
},
{
requant_scale_strides
},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
G
*
2
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
G
*
sizeof
(
InDataType
)
*
N
*
Hi
*
Wi
*
C
+
G
*
sizeof
(
WeiDataType
)
*
K
*
Y
*
X
*
C
+
G
*
sizeof
(
OutDataType
)
*
N
*
Ho
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
weight_lengths
,
weight_strides
,
{},
{},
out_lengths
,
out_strides
,
conv_strides
,
conv_dilations
,
in_left_pad
,
in_right_pad
,
PassThrough
{},
PassThrough
{},
OutElementOp
{
ActivationOp
{}});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/09_quantization/conv2d_fwd_perlayer_quantization.cpp
View file @
00af2988
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
#include <vector>
#include <vector>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_perlayer_quantization.hpp"
#include "ck/library/tensor_operation_instance/gpu/
quantization/
grouped_convolution_forward_perlayer_quantization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
...
...
client_example/13_batchnorm/CMakeLists.txt
View file @
00af2988
add_executable
(
client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp
)
add_executable
(
client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp
)
add_executable
(
client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp
)
target_link_libraries
(
client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations
)
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp"
using
XDataType
=
ck
::
half_t
;
using
DxDataType
=
float
;
using
DyDataType
=
float
;
using
AccDataType
=
float
;
using
ScaleDataType
=
ck
::
half_t
;
using
DscaleDbiasDataType
=
float
;
using
MeanVarDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
4
;
constexpr
int
NumBatchNormReduceDim
=
3
;
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
Rank
>
xyLengths
{
16
,
8
,
128
,
256
};
std
::
array
<
ck
::
index_t
,
Rank
>
xyStrides
{
8
*
128
*
256
,
128
*
256
,
256
,
1
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarLengths
{
256
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarStrides
{
1
};
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
{
0
,
1
,
2
};
ck
::
index_t
numXYElement
=
std
::
accumulate
(
xyLengths
.
begin
(),
xyLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
ck
::
index_t
numScaleBiasMeanVarElement
=
std
::
accumulate
(
scaleBiasMeanVarLengths
.
begin
(),
scaleBiasMeanVarLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
SimpleDeviceMem
x
(
sizeof
(
XDataType
)
*
numXYElement
);
SimpleDeviceMem
dy
(
sizeof
(
DyDataType
)
*
numXYElement
);
SimpleDeviceMem
scale
(
sizeof
(
ScaleDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
mean
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
invVariance
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
dx
(
sizeof
(
DxDataType
)
*
numXYElement
);
SimpleDeviceMem
dscale
(
sizeof
(
DscaleDbiasDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
dbias
(
sizeof
(
DscaleDbiasDataType
)
*
numScaleBiasMeanVarElement
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
PassThrough
,
Rank
,
NumBatchNormReduceDim
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
dy
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
dx
.
GetDeviceBuffer
(),
dscale
.
GetDeviceBuffer
(),
dbias
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
numXYElement
*
(
sizeof
(
XDataType
)
+
sizeof
(
DyDataType
)
+
sizeof
(
DxDataType
))
+
numScaleBiasMeanVarElement
*
(
sizeof
(
ScaleDataType
)
+
sizeof
(
DscaleDbiasDataType
)
*
2
+
sizeof
(
MeanVarDataType
)
*
2
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
dy
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
dx
.
GetDeviceBuffer
(),
dscale
.
GetDeviceBuffer
(),
dbias
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
example/14_gemm_quantization/CMakeLists.txt
0 → 100644
View file @
00af2988
add_example_executable
(
example_gemm_xdl_bias_relu_quantization_int8 gemm_xdl_bias_relu_quantization_int8.cpp
)
add_example_executable
(
example_gemm_xdl_quantization_int8 gemm_xdl_quantization_int8.cpp
)
\ No newline at end of file
example/14_gemm_quantization/gemm_xdl_bias_relu_quantization_int8.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
CDEElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul_Clamp
<
ActivationOp
>
;
using
ADataType
=
I8
;
using
BDataType
=
I8
;
using
AccDataType
=
I32
;
using
CShuffleDataType
=
I32
;
using
BiasDataType
=
I32
;
using
DsDataType
=
ck
::
Tuple
<
BiasDataType
>
;
using
EDataType
=
I8
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BiasLayout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
BiasLayout
>
;
using
ELayout
=
Row
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
PassThrough
,
// AElementwiseOperation,
PassThrough
,
// BElementwiseOperation,
CDEElementOp
,
// CDEElementwiseOperation,
GemmDefault
,
// GemmSpecialization GemmSpec,
1
,
// NumGemmKPrefetchStage,
256
,
// BlockSize,
256
,
// MPerBlock,
128
,
// NPerBlock,
64
,
// KPerBlock,
16
,
// AK1,
16
,
// BK1,
32
,
// MPerXDL,
32
,
// NPerXDL,
4
,
// MXdlPerWave,
2
,
// NXdlPerWave,
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1,
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder,
2
,
// index_t ABlockTransferSrcVectorDim,
16
,
// index_t ABlockTransferSrcScalarPerVector,
16
,
// index_t ABlockTransferDstScalarPerVector_AK1,
1
,
// bool ABlockLdsExtraM,
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder,
2
,
// index_t BBlockTransferSrcVectorDim,
8
,
// index_t BBlockTransferSrcScalarPerVector,
8
,
// index_t BBlockTransferDstScalarPerVector_BK1,
1
,
// bool BBlockLdsExtraN,
1
,
// index_t CShuffleMXdlPerWavePerShuffle,
1
,
// index_t CShuffleNXdlPerWavePerShuffle,
S
<
1
,
64
,
1
,
4
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock>
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideBias
=
0
;
ck
::
index_t
StrideE
=
1024
;
float
requant_scale
=
0.03
;
auto
f_host_tensor_descriptor2d
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
_uz
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
_uz
,
stride
}));
}
};
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
len
}),
std
::
vector
<
std
::
size_t
>
({
stride
}));
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BiasDataType
>
bias_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_n: "
<<
bias_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
128
,
127
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
128
,
127
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
128
,
127
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
cde_element_op
=
CDEElementOp
{
requant_scale
,
ActivationOp
{}};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideBias
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
bias_n
(
n
));
}
}
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/14_gemm_
xdl_
quantization/gemm_xdl_
relu_
quantization_int8.cpp
→
example/14_gemm_quantization/gemm_xdl_quantization_int8.cpp
View file @
00af2988
...
@@ -9,7 +9,7 @@
...
@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_
multiple_d_
xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -22,50 +22,59 @@
...
@@ -22,50 +22,59 @@
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
I8
=
int8_t
;
using
I32
=
int32_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
ActivationOp
=
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
using
C
DE
ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Activation_Mul_Clamp
<
ActivationOp
>
;
using
ADataType
=
int8_t
;
using
ADataType
=
I8
;
using
BDataType
=
int8_t
;
using
BDataType
=
I8
;
using
CDataType
=
int8_t
;
using
AccDataType
=
I32
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
I32
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
I8
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
ALayout
=
Row
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
BLayout
=
Col
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffle
<
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD_Xdl_CShuffle
<
ALayout
,
// typename ALayout,
ALayout
,
BLayout
,
// typename BLayout,
BLayout
,
CLayout
,
// typename CLayout,
DsLayout
,
ADataType
,
// typename ADataType,
ELayout
,
BDataType
,
// typename BDataType,
ADataType
,
CDataType
,
// typename CDataType,
BDataType
,
AccDataType
,
// typename GemmAccDataType,
AccDataType
,
CShuffleDataType
,
// typename CShuffleDataType,
CShuffleDataType
,
PassThrough
,
// typename AElementwiseOperation,
DsDataType
,
PassThrough
,
// typename BElementwiseOperation,
EDataType
,
CElementOp
,
// typename CElementwiseOperation,
PassThrough
,
// AElementwiseOperation,
PassThrough
,
// BElementwiseOperation,
CDEElementOp
,
// CDEElementwiseOperation,
GemmDefault
,
// GemmSpecialization GemmSpec,
GemmDefault
,
// GemmSpecialization GemmSpec,
1
,
//
index_t
NumGemmKPrefetchStage,
1
,
// NumGemmKPrefetchStage,
256
,
//
index_t
BlockSize,
256
,
// BlockSize,
256
,
//
index_t
MPerBlock,
256
,
// MPerBlock,
128
,
//
index_t
NPerBlock,
128
,
// NPerBlock,
64
,
//
index_t
KPerBlock,
64
,
// KPerBlock,
16
,
//
index_t
AK1,
16
,
// AK1,
16
,
//
index_t
BK1,
16
,
// BK1,
32
,
//
index_t
MPerXDL,
32
,
// MPerXDL,
32
,
//
index_t
NPerXDL,
32
,
// NPerXDL,
4
,
//
index_t
MXdlPerWave,
4
,
// MXdlPerWave,
2
,
//
index_t
NXdlPerWave,
2
,
// NXdlPerWave,
S
<
4
,
64
,
1
>
,
//
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1,
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1,
S
<
1
,
0
,
2
>
,
//
typename
ABlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder,
S
<
1
,
0
,
2
>
,
//
typename
ABlockTransferSrcAccessOrder,
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder,
2
,
// index_t ABlockTransferSrcVectorDim,
2
,
// index_t ABlockTransferSrcVectorDim,
16
,
// index_t ABlockTransferSrcScalarPerVector,
16
,
// index_t ABlockTransferSrcScalarPerVector,
16
,
// index_t ABlockTransferDstScalarPerVector_AK1,
16
,
// index_t ABlockTransferDstScalarPerVector_AK1,
...
@@ -84,53 +93,23 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
...
@@ -84,53 +93,23 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// clang-format on
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
C
DataType
,
float
,
PassThrough
,
PassThrough
,
CElementOp
>
;
ReferenceGemm
<
ADataType
,
BDataType
,
E
DataType
,
float
,
PassThrough
,
PassThrough
,
C
DE
ElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[]
)
int
main
()
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
// GEMM shape
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
Stride
C
=
4096
;
ck
::
index_t
Stride
E
=
1024
;
float
quant_multiplier
=
0.03
;
float
requant_scale
=
0.03
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
...
@@ -138,61 +117,56 @@ int main(int argc, char* argv[])
...
@@ -138,61 +117,56 @@ int main(int argc, char* argv[])
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
_uz
}));
}
}
else
else
{
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
_uz
,
stride
}));
}
}
};
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
C
DataType
>
c
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
E
DataType
>
e
_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
Stride
E
,
E
Layout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
c
_m_n: "
<<
c
_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"
e
_m_n: "
<<
e
_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
128
,
127
});
{
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
128
,
127
});
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a_
m_k_
device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_
k_n_
device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n
_device_buf
(
sizeof
(
C
DataType
)
*
c
_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e
_device_buf
(
sizeof
(
E
DataType
)
*
e
_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_
m_k_
device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_
k_n_
device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
CElementOp
{
quant_
multiplier
,
ActivationOp
{}};
auto
c
de
_element_op
=
C
DE
ElementOp
{
re
quant_
scale
,
ActivationOp
{}};
// do GEMM
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
b_device_buf
.
GetDeviceBuffer
(),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
M
,
N
,
N
,
K
,
K
,
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
{},
StrideE
,
a_element_op
,
a_element_op
,
b_element_op
,
b_element_op
,
c_element_op
);
c
de
_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
{
...
@@ -205,7 +179,7 @@ int main(int argc, char* argv[])
...
@@ -205,7 +179,7 @@ int main(int argc, char* argv[])
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
;
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
E
DataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
...
@@ -214,7 +188,7 @@ int main(int argc, char* argv[])
...
@@ -214,7 +188,7 @@ int main(int argc, char* argv[])
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n
_device_buf
.
FromDevice
(
c
_m_n_device_result
.
mData
.
data
());
e
_device_buf
.
FromDevice
(
e
_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
if
(
do_verification
)
{
{
...
@@ -222,11 +196,11 @@ int main(int argc, char* argv[])
...
@@ -222,11 +196,11 @@ int main(int argc, char* argv[])
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c
_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
a_m_k
,
b_k_n
,
e
_m_n_host_result
,
a_element_op
,
b_element_op
,
c
de
_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
return
ck
::
utils
::
check_err
(
c
_m_n_device_result
,
c
_m_n_host_result
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e
_m_n_device_result
,
e
_m_n_host_result
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/14_gemm_xdl_quantization/CMakeLists.txt
deleted
100644 → 0
View file @
9a2607d6
add_example_executable
(
example_gemm_xdl_relu_quantization_int8 gemm_xdl_relu_quantization_int8.cpp
)
\ No newline at end of file
example/34_batchnorm/batchnorm_backward_nhwc.cpp
View file @
00af2988
...
@@ -11,7 +11,7 @@
...
@@ -11,7 +11,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward
_nhwc_c
.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
...
@@ -106,7 +106,7 @@ class BatchNormBwdArg
...
@@ -106,7 +106,7 @@ class BatchNormBwdArg
using
namespace
ck
;
using
namespace
ck
;
template
<
typename
InOut
DataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
template
<
typename
X
DataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
bool
bnorm_bwd_nhwc_test
(
bool
do_verification
,
bool
bnorm_bwd_nhwc_test
(
bool
do_verification
,
int
init_method
,
int
init_method
,
bool
time_kernel
,
bool
time_kernel
,
...
@@ -118,13 +118,15 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -118,13 +118,15 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
constexpr
index_t
Rank
=
4
;
constexpr
index_t
Rank
=
4
;
constexpr
index_t
NumReduceDim
=
3
;
constexpr
index_t
NumReduceDim
=
3
;
using
ScaleDataType
=
XDataType
;
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm backward algorithm
// input data of the batchnorm backward algorithm
Tensor
<
InOut
DataType
>
x
(
inOutLengths
);
Tensor
<
X
DataType
>
x
(
inOutLengths
);
Tensor
<
InOut
DataType
>
dy
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dy
(
inOutLengths
);
Tensor
<
Acc
DataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
Scale
DataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedInvVar
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedInvVar
(
scaleBiasMeanVarLengths
);
...
@@ -132,8 +134,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -132,8 +134,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
Tensor
<
AccDataType
>
savedVariance
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedVariance
(
scaleBiasMeanVarLengths
);
// output data of the batchnorm backward algorithm
// output data of the batchnorm backward algorithm
Tensor
<
InOut
DataType
>
dx_ref
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dx_ref
(
inOutLengths
);
Tensor
<
InOut
DataType
>
dx
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dx
(
inOutLengths
);
Tensor
<
AccDataType
>
dscale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dscale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias
(
scaleBiasMeanVarLengths
);
...
@@ -153,7 +155,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -153,7 +155,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
const
float
noise_stddev
=
0.0001
f
;
const
float
noise_stddev
=
0.0001
f
;
// input data in normal distribution
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOut
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
X
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
// initialize the savedMean to be values with tiny variation to the mean of the x values
// initialize the savedMean to be values with tiny variation to the mean of the x values
savedMean
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
savedMean
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
...
@@ -182,7 +184,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -182,7 +184,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
const
float
x_stddev
=
1.0
f
;
const
float
x_stddev
=
1.0
f
;
// input data in normal distribution
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOut
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
X
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
};
};
if
(
do_verification
)
if
(
do_verification
)
...
@@ -190,34 +192,34 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -190,34 +192,34 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
switch
(
init_method
)
switch
(
init_method
)
{
{
case
0
:
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOut
DataType
>
{},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
Acc
DataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOut
DataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
Scale
DataType
>
{},
num_thread
);
break
;
break
;
case
1
:
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOut
DataType
>
{
1
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
Acc
DataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOut
DataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
Scale
DataType
>
{
1
},
num_thread
);
break
;
break
;
case
2
:
case
2
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOut
DataType
>
{
-
5
,
5
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
Acc
DataType
>
{
-
2
,
2
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOut
DataType
>
{
-
5
,
5
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
Scale
DataType
>
{
-
5
,
5
},
num_thread
);
break
;
break
;
default:
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOut
DataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
Acc
DataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOut
DataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
Scale
DataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
}
}
};
};
// input data of the batchnorm backward algorithm
// input data of the batchnorm backward algorithm
DeviceMem
x_dev
(
sizeof
(
InOut
DataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
X
DataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
InOut
DataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
Acc
DataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
Acc
DataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
Scale
DataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedMean_dev
(
sizeof
(
AccDataType
)
*
savedMean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedMean_dev
(
sizeof
(
AccDataType
)
*
savedMean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedInvVar_dev
(
sizeof
(
AccDataType
)
*
savedInvVar
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedInvVar_dev
(
sizeof
(
AccDataType
)
*
savedInvVar
.
mDesc
.
GetElementSpaceSize
());
// output data of the batchnorm backward algorithm
// output data of the batchnorm backward algorithm
DeviceMem
dx_dev
(
sizeof
(
InOut
DataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
Acc
DataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dscale_dev
(
sizeof
(
AccDataType
)
*
dscale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dscale_dev
(
sizeof
(
AccDataType
)
*
dscale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbias_dev
(
sizeof
(
AccDataType
)
*
dbias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbias_dev
(
sizeof
(
AccDataType
)
*
dbias
.
mDesc
.
GetElementSpaceSize
());
...
@@ -249,12 +251,12 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -249,12 +251,12 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchNormBwdInstance
=
using
DeviceBatchNormBwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
InOut
DataType
,
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
X
DataType
,
InOut
DataType
,
Acc
DataType
,
InOut
DataType
,
Acc
DataType
,
AccDataType
,
AccDataType
,
Acc
DataType
,
// ScaleDataType
Scale
DataType
,
// ScaleDataType
AccDataType
,
//
B
iasDataType
AccDataType
,
//
DscaleDb
iasDataType
AccDataType
,
// MeanVarDataType
AccDataType
,
// MeanVarDataType
PassThroughOp
,
PassThroughOp
,
Rank
,
Rank
,
...
@@ -269,8 +271,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -269,8 +271,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
1
,
// XSrcVectorSize
1
,
// XSrcVectorSize
1
,
// DySrcVectorSize
1
,
// DySrcVectorSize
1
,
// DxDstVectorSize
1
,
// DxDstVectorSize
1
,
// ScaleSrc
Dst
VectorSize
1
,
// ScaleSrcVectorSize
1
,
//
B
iasDstVectorSize
1
,
//
DscaleDb
iasDstVectorSize
1
>
;
// MeanVarSrcVectorSize
1
>
;
// MeanVarSrcVectorSize
auto
batchnorm_bwd
=
DeviceBatchNormBwdInstance
{};
auto
batchnorm_bwd
=
DeviceBatchNormBwdInstance
{};
...
@@ -324,7 +326,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -324,7 +326,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
// inputing of x, dy, scale, outputing of dx, dscale, dbias
// inputing of x, dy, scale, outputing of dx, dscale, dbias
num_bytes
+=
num_bytes
+=
total_length
*
sizeof
(
InOut
DataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
total_length
*
sizeof
(
X
DataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
// outputing of mean, inv-variance
// outputing of mean, inv-variance
num_bytes
+=
haveSavedMeanInvVar
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
num_bytes
+=
haveSavedMeanInvVar
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
...
@@ -341,14 +343,16 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -341,14 +343,16 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
using
ReferenceBatchNormBwdInstance
=
using
ReferenceBatchNormBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
<
InOutDataType
,
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd
<
XDataType
,
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
// ScaleDataType
AccDataType
,
AccDataType
,
PassThroughOp
>
;
AccDataType
,
PassThroughOp
,
Rank
,
NumReduceDim
>
;
auto
batchNormBwd_ref
=
ReferenceBatchNormBwdInstance
{};
auto
batchNormBwd_ref
=
ReferenceBatchNormBwdInstance
{};
...
@@ -390,8 +394,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
...
@@ -390,8 +394,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
dbias_dev
.
FromDevice
(
dbias
.
data
());
dbias_dev
.
FromDevice
(
dbias
.
data
());
// clang-format off
// clang-format off
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
1
e-
5
,
1
e-
5
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
2
e-
4
,
2
e-
4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
1
e-
5
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
2
e-
4
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dx
.
mData
,
dx_ref
.
mData
,
"dx result:"
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dx
.
mData
,
dx_ref
.
mData
,
"dx result:"
);
// clang-format on
// clang-format on
};
};
...
...
example/44_conv2d_fwd_quant/CMakeLists.txt
→
example/44_conv2d_fwd_quant
ization
/CMakeLists.txt
View file @
00af2988
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
0 → 100644
View file @
00af2988
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
RequantScaleLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_k_desc
,
const
HostTensorDescriptor
&
requant_scale_g_k_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
BiasDataType
>
bias
(
bias_g_k_desc
);
Tensor
<
RequantScaleDataType
>
requant_scale
(
requant_scale_g_k_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"requant_scale: "
<<
requant_scale
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
128
,
127
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
128
,
127
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
128
,
127
});
requant_scale
.
GenerateTensorValue
(
GeneratorTensor_2
<
RequantScaleDataType
>
{
0
,
1
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
requant_scale_device_buf
(
sizeof
(
RequantScaleDataType
)
*
requant_scale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
requant_scale_device_buf
.
ToDevice
(
requant_scale
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d1_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d1_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_k_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_k_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
requant_scale_g_k_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
requant_scale_g_k_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
(),
requant_scale_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{
d0_g_n_k_wos_lengths
,
d1_g_n_k_wos_lengths
},
{
d0_g_n_k_wos_strides
,
d1_g_n_k_wos_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
requant_scale
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
ck
::
index_t
ndim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ndim_spatial
,
// n_dim
1
,
// group
4
,
// batch
64
,
// output channels
32
,
// input chanels
{
3
,
3
},
// weight HW
{
71
,
71
},
// x HW
{
2
,
2
},
// strides
{
1
,
1
},
// dilations
{
1
,
1
},
// left_pads
{
1
,
1
}
// right_pads
};
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{
ActivationOp
{}};
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
// TODO - make_bias_host_tensor_descriptor_g_n_k_wos_packed()
const
auto
bias_g_k_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
requant_scale_g_k_desc
=
bias_g_k_desc
;
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
cout
<<
out_g_n_k_wos_desc
<<
std
::
endl
;
using
deviceOp
=
DeviceGroupedConvNDFwdInstance
<
ndim_spatial
,
InLayout
,
WeiLayout
,
BiasLayout
,
RequantScaleLayout
,
OutLayout
>
;
return
run_grouped_conv_fwd
<
ndim_spatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
deviceOp
>
(
do_verification
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_k_desc
,
requant_scale_g_k_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
→
example/44_conv2d_fwd_quant
ization
/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
View file @
00af2988
...
@@ -11,6 +11,7 @@
...
@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
...
@@ -163,17 +164,16 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -163,17 +164,16 @@ bool run_grouped_conv_fwd(bool do_verification,
// do Conv
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
{
bias_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{
{
d0_g_n_k_wos_lengths
}
}
,
{
d0_g_n_k_wos_lengths
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{
{
d0_g_n_k_wos_strides
}
}
,
{
d0_g_n_k_wos_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_strides
,
...
@@ -235,8 +235,8 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -235,8 +235,8 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
pass
&=
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
→
example/44_conv2d_fwd_quant
ization
/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
View file @
00af2988
...
@@ -11,6 +11,7 @@
...
@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
...
@@ -150,14 +151,14 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -150,14 +151,14 @@ bool run_grouped_conv_fwd(bool do_verification,
auto
invoker
=
conv
.
MakeInvoker
();
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
{},
out_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}
},
{
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}
},
{
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_strides
,
...
@@ -213,8 +214,8 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -213,8 +214,8 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
pass
&=
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
include/ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp
View file @
00af2988
...
@@ -13,7 +13,16 @@ namespace ck {
...
@@ -13,7 +13,16 @@ namespace ck {
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
,
typename
DyElementwiseOp
>
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormBwd
:
public
BaseOperator
struct
DeviceBatchNormBwd
:
public
BaseOperator
{
{
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumBatchNormReduceDim
;
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumBatchNormReduceDim
;
...
@@ -26,7 +35,7 @@ struct DeviceBatchNormBwd : public BaseOperator
...
@@ -26,7 +35,7 @@ struct DeviceBatchNormBwd : public BaseOperator
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
B
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
DscaleDb
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_x
,
const
void
*
p_dy
,
const
void
*
p_dy
,
...
@@ -42,9 +51,26 @@ struct DeviceBatchNormBwd : public BaseOperator
...
@@ -42,9 +51,26 @@ struct DeviceBatchNormBwd : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
,
typename
DyElementwiseOp
>
template
<
typename
XDataType
,
using
DeviceBatchNormBwdPtr
=
typename
DxDataType
,
std
::
unique_ptr
<
DeviceBatchNormBwd
<
Rank
,
NumBatchNormReduceDim
,
DyElementwiseOp
>>
;
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormBwdPtr
=
std
::
unique_ptr
<
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp
View file @
00af2988
...
@@ -27,7 +27,7 @@ template <typename XDataType,
...
@@ -27,7 +27,7 @@ template <typename XDataType,
typename
DyDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
Rank
,
...
@@ -42,11 +42,19 @@ template <typename XDataType,
...
@@ -42,11 +42,19 @@ template <typename XDataType,
index_t
XSrcVectorSize
,
index_t
XSrcVectorSize
,
index_t
DySrcVectorSize
,
index_t
DySrcVectorSize
,
index_t
DxDstVectorSize
,
index_t
DxDstVectorSize
,
index_t
ScaleSrc
Dst
VectorSize
,
index_t
ScaleSrcVectorSize
,
index_t
B
iasDstVectorSize
,
index_t
DscaleDb
iasDstVectorSize
,
index_t
MeanVarSrcVectorSize
>
index_t
MeanVarSrcVectorSize
>
struct
DeviceBatchNormBwdImpl
struct
DeviceBatchNormBwdImpl
:
public
DeviceBatchNormBwd
<
XDataType
,
:
public
DeviceBatchNormBwd
<
Rank
,
NumBatchNormReduceDim
,
DyElementwiseOp
>
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>
{
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
...
@@ -194,7 +202,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -194,7 +202,7 @@ struct DeviceBatchNormBwdImpl
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
B
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
DscaleDb
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
XDataType
*
p_x
,
const
XDataType
*
p_x
,
const
DyDataType
*
p_dy
,
const
DyDataType
*
p_dy
,
...
@@ -204,11 +212,11 @@ struct DeviceBatchNormBwdImpl
...
@@ -204,11 +212,11 @@ struct DeviceBatchNormBwdImpl
const
DyElementwiseOp
dy_elementwise_op
,
const
DyElementwiseOp
dy_elementwise_op
,
double
epsilon
,
double
epsilon
,
DxDataType
*
p_dx
,
DxDataType
*
p_dx
,
S
caleDataType
*
p_dscale
,
Ds
caleD
biasD
ataType
*
p_dscale
,
B
iasDataType
*
p_dbias
)
DscaleDb
iasDataType
*
p_dbias
)
:
bnScaleBiasMeanVarLengths_
(
bnScaleBiasMeanVarLengths
),
:
bnScaleBiasMeanVarLengths_
(
bnScaleBiasMeanVarLengths
),
bnScaleStrides_
(
bnScaleStrides
),
bnScaleStrides_
(
bnScaleStrides
),
bn
B
iasStrides_
(
bn
B
iasStrides
),
bn
DscaleDb
iasStrides_
(
bn
DscaleDb
iasStrides
),
bnMeanVarStrides_
(
bnMeanVarStrides
),
bnMeanVarStrides_
(
bnMeanVarStrides
),
p_x_
(
p_x
),
p_x_
(
p_x
),
p_dy_
(
p_dy
),
p_dy_
(
p_dy
),
...
@@ -272,8 +280,8 @@ struct DeviceBatchNormBwdImpl
...
@@ -272,8 +280,8 @@ struct DeviceBatchNormBwdImpl
MakeXY2dDescriptor
(
xyLengths_
,
dxStrides_
,
blkGroupSize
,
numBlockTileIteration
);
MakeXY2dDescriptor
(
xyLengths_
,
dxStrides_
,
blkGroupSize
,
numBlockTileIteration
);
scale_grid_desc_m
=
scale_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bnScaleStrides
);
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bnScaleStrides
);
bias_grid_desc_m
=
dscale_d
bias_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bn
B
iasStrides
);
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bn
DscaleDb
iasStrides
);
mean_var_grid_desc_m
=
mean_var_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bnMeanVarStrides
);
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bnMeanVarStrides
);
}
}
...
@@ -289,7 +297,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -289,7 +297,7 @@ struct DeviceBatchNormBwdImpl
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bn
B
iasStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bn
DscaleDb
iasStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnMeanVarStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnMeanVarStrides_
;
const
XDataType
*
p_x_
;
const
XDataType
*
p_x_
;
...
@@ -299,8 +307,8 @@ struct DeviceBatchNormBwdImpl
...
@@ -299,8 +307,8 @@ struct DeviceBatchNormBwdImpl
const
MeanVarDataType
*
p_savedInvVar_
;
const
MeanVarDataType
*
p_savedInvVar_
;
const
DyElementwiseOp
dy_elementwise_op_
;
const
DyElementwiseOp
dy_elementwise_op_
;
DxDataType
*
p_dx_
;
DxDataType
*
p_dx_
;
S
caleDataType
*
p_dscale_
;
Ds
caleD
biasD
ataType
*
p_dscale_
;
B
iasDataType
*
p_dbias_
;
DscaleDb
iasDataType
*
p_dbias_
;
long_index_t
invariant_length
;
long_index_t
invariant_length
;
long_index_t
reduce_length
;
long_index_t
reduce_length
;
...
@@ -313,7 +321,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -313,7 +321,7 @@ struct DeviceBatchNormBwdImpl
XYGridDesc_M_K
dy_grid_desc_m_k
;
XYGridDesc_M_K
dy_grid_desc_m_k
;
XYGridDesc_M_K
dx_grid_desc_m_k
;
XYGridDesc_M_K
dx_grid_desc_m_k
;
ScaleBiasGridDesc_M
scale_grid_desc_m
;
ScaleBiasGridDesc_M
scale_grid_desc_m
;
ScaleBiasGridDesc_M
bias_grid_desc_m
;
ScaleBiasGridDesc_M
dscale_d
bias_grid_desc_m
;
MeanVarGridDesc_M
mean_var_grid_desc_m
;
MeanVarGridDesc_M
mean_var_grid_desc_m
;
void
*
workspace_mean
;
void
*
workspace_mean
;
...
@@ -337,11 +345,11 @@ struct DeviceBatchNormBwdImpl
...
@@ -337,11 +345,11 @@ struct DeviceBatchNormBwdImpl
{
{
// workspace for the partial reduced result for dscale
// workspace for the partial reduced result for dscale
workspace_size
+=
workspace_size
+=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
S
caleDataType
)
+
64
;
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
Ds
caleD
biasD
ataType
)
+
64
;
// workspace for the partial reduced result for dbias
// workspace for the partial reduced result for dbias
workspace_size
+=
workspace_size
+=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
B
iasDataType
)
+
64
;
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
DscaleDb
iasDataType
)
+
64
;
if
(
!
pArg_
->
haveSavedMeanInvVar_
)
if
(
!
pArg_
->
haveSavedMeanInvVar_
)
{
{
...
@@ -379,7 +387,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -379,7 +387,7 @@ struct DeviceBatchNormBwdImpl
// setup buffer for the partial reduced result for dscale
// setup buffer for the partial reduced result for dscale
pArg_
->
workspace_reduce_dscale
=
pArg_
->
p_workspace_
;
pArg_
->
workspace_reduce_dscale
=
pArg_
->
p_workspace_
;
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
S
caleDataType
);
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
Ds
caleD
biasD
ataType
);
space_sz
=
math
::
integer_least_multiple
(
space_sz
,
64
);
space_sz
=
math
::
integer_least_multiple
(
space_sz
,
64
);
// setup buffer for the partial reduced result for dbias
// setup buffer for the partial reduced result for dbias
...
@@ -388,7 +396,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -388,7 +396,7 @@ struct DeviceBatchNormBwdImpl
if
(
UseMultiblockInK
&&
pArg_
->
blkGroupSize
>
1
)
if
(
UseMultiblockInK
&&
pArg_
->
blkGroupSize
>
1
)
{
{
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
B
iasDataType
);
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
DscaleDb
iasDataType
);
space_sz
=
math
::
integer_least_multiple
(
space_sz
,
64
);
space_sz
=
math
::
integer_least_multiple
(
space_sz
,
64
);
// setup buffer for welford intermediate mean
// setup buffer for welford intermediate mean
...
@@ -454,7 +462,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -454,7 +462,7 @@ struct DeviceBatchNormBwdImpl
DyDataType
,
DyDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
MeanVarDataType
,
DyElementwiseOp
,
DyElementwiseOp
,
XYGridDesc_M_K
,
XYGridDesc_M_K
,
...
@@ -477,7 +485,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -477,7 +485,7 @@ struct DeviceBatchNormBwdImpl
DxDataType
,
DxDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
MeanVarDataType
,
DyElementwiseOp
,
DyElementwiseOp
,
XYGridDesc_M_K
,
XYGridDesc_M_K
,
...
@@ -493,8 +501,8 @@ struct DeviceBatchNormBwdImpl
...
@@ -493,8 +501,8 @@ struct DeviceBatchNormBwdImpl
XSrcVectorSize
,
XSrcVectorSize
,
DySrcVectorSize
,
DySrcVectorSize
,
DxDstVectorSize
,
DxDstVectorSize
,
ScaleSrc
Dst
VectorSize
,
ScaleSrcVectorSize
,
B
iasDstVectorSize
,
DscaleDb
iasDstVectorSize
,
MeanVarSrcVectorSize
>
;
MeanVarSrcVectorSize
>
;
if
(
UseMultiblockInK
&&
arg
.
blkGroupSize
>
1
)
if
(
UseMultiblockInK
&&
arg
.
blkGroupSize
>
1
)
...
@@ -553,7 +561,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -553,7 +561,7 @@ struct DeviceBatchNormBwdImpl
DyDataType
,
DyDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
MeanVarDataType
,
DyElementwiseOp
,
DyElementwiseOp
,
XYGridDesc_M_K
,
XYGridDesc_M_K
,
...
@@ -568,7 +576,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -568,7 +576,7 @@ struct DeviceBatchNormBwdImpl
DyDataType
,
DyDataType
,
DxDataType
,
DxDataType
,
ScaleDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
MeanVarDataType
,
DyElementwiseOp
,
DyElementwiseOp
,
XYGridDesc_M_K
,
XYGridDesc_M_K
,
...
@@ -614,8 +622,8 @@ struct DeviceBatchNormBwdImpl
...
@@ -614,8 +622,8 @@ struct DeviceBatchNormBwdImpl
:
static_cast
<
MeanVarDataType
*>
(
arg
.
workspace_savedInvVar
),
:
static_cast
<
MeanVarDataType
*>
(
arg
.
workspace_savedInvVar
),
arg
.
p_x_
,
arg
.
p_x_
,
arg
.
p_dy_
,
arg
.
p_dy_
,
static_cast
<
S
caleDataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
Ds
caleD
biasD
ataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
B
iasDataType
*>
(
arg
.
workspace_reduce_dbias
));
static_cast
<
DscaleDb
iasDataType
*>
(
arg
.
workspace_reduce_dbias
));
avg_time
+=
launch_and_time_kernel
(
avg_time
+=
launch_and_time_kernel
(
stream_config
,
stream_config
,
...
@@ -629,13 +637,13 @@ struct DeviceBatchNormBwdImpl
...
@@ -629,13 +637,13 @@ struct DeviceBatchNormBwdImpl
dscale_dbias_grid_desc_m_k
,
dscale_dbias_grid_desc_m_k
,
arg
.
mean_var_grid_desc_m
,
arg
.
mean_var_grid_desc_m
,
arg
.
scale_grid_desc_m
,
arg
.
scale_grid_desc_m
,
arg
.
bias_grid_desc_m
,
arg
.
dscale_d
bias_grid_desc_m
,
arg
.
blkGroupSize
,
arg
.
blkGroupSize
,
arg
.
reduce_length
,
arg
.
reduce_length
,
arg
.
numBlockTileIteration
,
arg
.
numBlockTileIteration
,
numDscaleDbiasBlockTileIteration
,
numDscaleDbiasBlockTileIteration
,
static_cast
<
const
S
caleDataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
const
Ds
caleD
biasD
ataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
const
B
iasDataType
*>
(
arg
.
workspace_reduce_dbias
),
static_cast
<
const
DscaleDb
iasDataType
*>
(
arg
.
workspace_reduce_dbias
),
arg
.
haveSavedMeanInvVar_
arg
.
haveSavedMeanInvVar_
?
arg
.
p_savedMean_
?
arg
.
p_savedMean_
:
static_cast
<
const
MeanVarDataType
*>
(
arg
.
workspace_savedMean
),
:
static_cast
<
const
MeanVarDataType
*>
(
arg
.
workspace_savedMean
),
...
@@ -664,7 +672,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -664,7 +672,7 @@ struct DeviceBatchNormBwdImpl
DxDataType
,
DxDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
MeanVarDataType
,
DyElementwiseOp
,
DyElementwiseOp
,
XYGridDesc_M_K
,
XYGridDesc_M_K
,
...
@@ -680,8 +688,8 @@ struct DeviceBatchNormBwdImpl
...
@@ -680,8 +688,8 @@ struct DeviceBatchNormBwdImpl
XSrcVectorSize
,
XSrcVectorSize
,
DySrcVectorSize
,
DySrcVectorSize
,
DxDstVectorSize
,
DxDstVectorSize
,
ScaleSrc
Dst
VectorSize
,
ScaleSrcVectorSize
,
B
iasDstVectorSize
,
DscaleDb
iasDstVectorSize
,
MeanVarSrcVectorSize
>
;
MeanVarSrcVectorSize
>
;
const
auto
kern_batchnorm_bwd
=
kernel_batchnorm_backward_with_blockwise_welford
<
const
auto
kern_batchnorm_bwd
=
kernel_batchnorm_backward_with_blockwise_welford
<
...
@@ -691,7 +699,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -691,7 +699,7 @@ struct DeviceBatchNormBwdImpl
DxDataType
,
DxDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
MeanVarDataType
,
DyElementwiseOp
,
DyElementwiseOp
,
XYGridDesc_M_K
,
XYGridDesc_M_K
,
...
@@ -708,7 +716,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -708,7 +716,7 @@ struct DeviceBatchNormBwdImpl
arg
.
dy_grid_desc_m_k
,
arg
.
dy_grid_desc_m_k
,
arg
.
dx_grid_desc_m_k
,
arg
.
dx_grid_desc_m_k
,
arg
.
scale_grid_desc_m
,
arg
.
scale_grid_desc_m
,
arg
.
bias_grid_desc_m
,
arg
.
dscale_d
bias_grid_desc_m
,
arg
.
mean_var_grid_desc_m
,
arg
.
mean_var_grid_desc_m
,
get_reduce_count_per_thread
,
get_reduce_count_per_thread
,
arg
.
reduce_length
,
arg
.
reduce_length
,
...
@@ -764,16 +772,16 @@ struct DeviceBatchNormBwdImpl
...
@@ -764,16 +772,16 @@ struct DeviceBatchNormBwdImpl
return
false
;
return
false
;
};
};
if
(
pArg_
->
bnScaleStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
ScaleSrc
Dst
VectorSize
!=
1
)
if
(
pArg_
->
bnScaleStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
ScaleSrcVectorSize
!=
1
)
return
false
;
return
false
;
if
(
pArg_
->
bn
B
iasStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
B
iasDstVectorSize
!=
1
)
if
(
pArg_
->
bn
DscaleDb
iasStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
DscaleDb
iasDstVectorSize
!=
1
)
return
false
;
return
false
;
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
ScaleSrc
Dst
VectorSize
!=
0
)
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
ScaleSrcVectorSize
!=
0
)
return
false
;
return
false
;
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
B
iasDstVectorSize
!=
0
)
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
DscaleDb
iasDstVectorSize
!=
0
)
return
false
;
return
false
;
if
(
pArg_
->
haveSavedMeanInvVar_
)
if
(
pArg_
->
haveSavedMeanInvVar_
)
...
@@ -806,7 +814,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -806,7 +814,7 @@ struct DeviceBatchNormBwdImpl
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
B
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
DscaleDb
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_x
,
const
void
*
p_dy
,
const
void
*
p_dy
,
...
@@ -826,7 +834,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -826,7 +834,7 @@ struct DeviceBatchNormBwdImpl
reduceDims
,
reduceDims
,
bnScaleBiasMeanVarLengths
,
bnScaleBiasMeanVarLengths
,
bnScaleStrides
,
bnScaleStrides
,
bn
B
iasStrides
,
bn
DscaleDb
iasStrides
,
bnMeanVarStrides
,
bnMeanVarStrides
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
DyDataType
*>
(
p_dy
),
static_cast
<
const
DyDataType
*>
(
p_dy
),
...
@@ -836,8 +844,8 @@ struct DeviceBatchNormBwdImpl
...
@@ -836,8 +844,8 @@ struct DeviceBatchNormBwdImpl
dy_elementwise_op
,
dy_elementwise_op
,
epsilon
,
epsilon
,
static_cast
<
DxDataType
*>
(
p_dx
),
static_cast
<
DxDataType
*>
(
p_dx
),
static_cast
<
S
caleDataType
*>
(
p_dscale
),
static_cast
<
Ds
caleD
biasD
ataType
*>
(
p_dscale
),
static_cast
<
B
iasDataType
*>
(
p_dbias
));
static_cast
<
DscaleDb
iasDataType
*>
(
p_dbias
));
};
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
...
@@ -854,7 +862,7 @@ struct DeviceBatchNormBwdImpl
...
@@ -854,7 +862,7 @@ struct DeviceBatchNormBwdImpl
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"XDyDxVectorDim_"
<<
XDyDxVectorDim
<<
","
;
str
<<
"XDyDxVectorDim_"
<<
XDyDxVectorDim
<<
","
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_scale_"
<<
ScaleSrc
Dst
VectorSize
<<
"_bias_"
<<
B
iasDstVectorSize
<<
"_mean_var_"
<<
MeanVarSrcVectorSize
<<
"_Dx_"
<<
DxDstVectorSize
<<
">"
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_scale_"
<<
ScaleSrcVectorSize
<<
"_bias_"
<<
DscaleDb
iasDstVectorSize
<<
"_mean_var_"
<<
MeanVarSrcVectorSize
<<
"_Dx_"
<<
DxDstVectorSize
<<
">"
;
// clang-format on
// clang-format on
return
str
.
str
();
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/element/quantization_operation.hpp
View file @
00af2988
...
@@ -10,8 +10,8 @@ namespace element_wise {
...
@@ -10,8 +10,8 @@ namespace element_wise {
template
<
typename
Activation
>
template
<
typename
Activation
>
struct
Activation_Mul_Clamp
struct
Activation_Mul_Clamp
{
{
Activation_Mul_Clamp
(
float
multiplier
,
Activation
activationOp
)
Activation_Mul_Clamp
(
float
requantScale
,
Activation
activationOp
)
:
multiplier_
(
multiplier
),
activationOp_
(
activationOp
)
:
requantScale_
(
requantScale
),
activationOp_
(
activationOp
)
{
{
}
}
...
@@ -19,7 +19,7 @@ struct Activation_Mul_Clamp
...
@@ -19,7 +19,7 @@ struct Activation_Mul_Clamp
{
{
float
x_fp32
=
ck
::
type_convert
<
float
>
(
x
);
float
x_fp32
=
ck
::
type_convert
<
float
>
(
x
);
activationOp_
(
x_fp32
,
x_fp32
);
activationOp_
(
x_fp32
,
x_fp32
);
float
y_fp32
=
math
::
clamp
(
multiplier
_
*
x_fp32
,
-
128.
f
,
127.
f
);
float
y_fp32
=
math
::
clamp
(
requantScale
_
*
x_fp32
,
-
128.
f
,
127.
f
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
}
}
...
@@ -28,10 +28,29 @@ struct Activation_Mul_Clamp
...
@@ -28,10 +28,29 @@ struct Activation_Mul_Clamp
// We might type_convert to int8 after lambda in someplace
// We might type_convert to int8 after lambda in someplace
float
x_fp32
=
ck
::
type_convert
<
float
>
(
x
);
float
x_fp32
=
ck
::
type_convert
<
float
>
(
x
);
activationOp_
(
x_fp32
,
x_fp32
);
activationOp_
(
x_fp32
,
x_fp32
);
y
=
math
::
clamp
(
multiplier_
*
x_fp32
,
-
128.
f
,
127.
f
);
y
=
math
::
clamp
(
requantScale_
*
x_fp32
,
-
128.
f
,
127.
f
);
}
float
requantScale_
;
Activation
activationOp_
;
};
// Conv Perchannel quantization + Activation function which is piecewise linear function, such as
// relu, leaky relu ...etc
template
<
typename
Activation
>
struct
Activation_Mul2_Clamp
{
Activation_Mul2_Clamp
(
Activation
activationOp
)
:
activationOp_
(
activationOp
)
{}
__host__
__device__
constexpr
void
operator
()(
int8_t
&
y
,
const
int32_t
&
x
,
const
float
&
requantScale
)
const
{
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x
);
activationOp_
(
y_fp32
,
y_fp32
);
y_fp32
=
math
::
clamp
(
requantScale
*
y_fp32
,
-
128.
f
,
127.
f
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
}
}
float
multiplier_
;
Activation
activationOp_
;
Activation
activationOp_
;
};
};
...
@@ -39,21 +58,40 @@ struct Activation_Mul_Clamp
...
@@ -39,21 +58,40 @@ struct Activation_Mul_Clamp
template
<
typename
Activation
>
template
<
typename
Activation
>
struct
Add_Activation_Mul_Clamp
struct
Add_Activation_Mul_Clamp
{
{
Add_Activation_Mul_Clamp
(
float
multiplier
,
Activation
activationOp
)
Add_Activation_Mul_Clamp
(
float
requantScale
,
Activation
activationOp
)
:
multiplier_
(
multiplier
),
activationOp_
(
activationOp
)
:
requantScale_
(
requantScale
),
activationOp_
(
activationOp
)
{
{
}
}
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()(
int8_t
&
y
,
const
int32_t
&
x1
,
const
int32_t
&
x2
)
const
operator
()(
int8_t
&
y
,
const
int32_t
&
x
,
const
int32_t
&
bias
)
const
{
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x
+
bias
);
activationOp_
(
y_fp32
,
y_fp32
);
y_fp32
=
math
::
clamp
(
requantScale_
*
y_fp32
,
-
128.
f
,
127.
f
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
}
float
requantScale_
;
Activation
activationOp_
;
};
// Conv Perchannel quantization + Activation function which is piecewise linear function, such as
// relu, leaky relu ...etc
template
<
typename
Activation
>
struct
Add_Activation_Mul2_Clamp
{
Add_Activation_Mul2_Clamp
(
Activation
activationOp
)
:
activationOp_
(
activationOp
)
{}
__host__
__device__
constexpr
void
operator
()(
int8_t
&
y
,
const
int32_t
&
x
,
const
int32_t
&
bias
,
const
float
&
requantScale
)
const
{
{
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x
1
+
x2
);
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x
+
bias
);
activationOp_
(
y_fp32
,
y_fp32
);
activationOp_
(
y_fp32
,
y_fp32
);
y_fp32
=
math
::
clamp
(
multiplier_
*
y_fp32
,
-
128.
f
,
127.
f
);
y_fp32
=
math
::
clamp
(
requantScale
*
y_fp32
,
-
128.
f
,
127.
f
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
}
}
float
multiplier_
;
Activation
activationOp_
;
Activation
activationOp_
;
};
};
...
@@ -61,23 +99,23 @@ struct Add_Activation_Mul_Clamp
...
@@ -61,23 +99,23 @@ struct Add_Activation_Mul_Clamp
template
<
typename
Activation
>
template
<
typename
Activation
>
struct
Add_Mul_Activation_Mul_Clamp
struct
Add_Mul_Activation_Mul_Clamp
{
{
Add_Mul_Activation_Mul_Clamp
(
float
multiplier1
,
float
multiplier
2
,
Activation
activationOp
)
Add_Mul_Activation_Mul_Clamp
(
float
requantScale1
,
float
requantScale
2
,
Activation
activationOp
)
:
multiplier1_
(
multiplier1
),
multiplier2_
(
multiplier
2
),
activationOp_
(
activationOp
)
:
requantScale1_
(
requantScale1
),
requantScale2_
(
requantScale
2
),
activationOp_
(
activationOp
)
{
{
}
}
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()(
int8_t
&
y
,
const
int32_t
&
x
1
,
const
int32_t
&
x2
)
const
operator
()(
int8_t
&
y
,
const
int32_t
&
x
,
const
int32_t
&
bias
)
const
{
{
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x
1
+
x2
);
float
y_fp32
=
ck
::
type_convert
<
float
>
(
x
+
bias
);
y_fp32
=
multiplier
1_
*
y_fp32
;
y_fp32
=
requantScale
1_
*
y_fp32
;
activationOp_
(
y_fp32
,
y_fp32
);
activationOp_
(
y_fp32
,
y_fp32
);
y_fp32
=
math
::
clamp
(
multiplier
2_
*
y_fp32
,
-
128.
f
,
127.
f
);
y_fp32
=
math
::
clamp
(
requantScale
2_
*
y_fp32
,
-
128.
f
,
127.
f
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
y
=
ck
::
type_convert
<
int8_t
>
(
y_fp32
);
}
}
float
multiplier
1_
;
float
requantScale
1_
;
float
multiplier
2_
;
float
requantScale
2_
;
Activation
activationOp_
;
Activation
activationOp_
;
};
};
...
...
include/ck/tensor_operation/gpu/grid/batchnorm_multiblock/gridwise_multiblock_reduce_second_half_batchnorm_backward_final.hpp
View file @
00af2988
...
@@ -16,7 +16,7 @@ template <typename GridwiseReduceSecondHalfBatchNormBackwardFinal_,
...
@@ -16,7 +16,7 @@ template <typename GridwiseReduceSecondHalfBatchNormBackwardFinal_,
typename
DyDataType
,
typename
DyDataType
,
typename
DxDataType
,
typename
DxDataType
,
typename
ScaleDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
DyElementwiseOp
,
typename
XYGridDesc_M_K
,
typename
XYGridDesc_M_K
,
...
@@ -35,8 +35,8 @@ __global__ void kernel_reduce_second_half_batchnorm_backward_final(
...
@@ -35,8 +35,8 @@ __global__ void kernel_reduce_second_half_batchnorm_backward_final(
long_index_t
reduce_size
,
long_index_t
reduce_size
,
index_t
num_xy_k_block_tile_iteration
,
index_t
num_xy_k_block_tile_iteration
,
index_t
num_dscale_dbias_k_block_tile_iteration
,
index_t
num_dscale_dbias_k_block_tile_iteration
,
const
S
caleDataType
*
const
__restrict__
p_reduce_dscale
,
const
Ds
caleD
biasD
ataType
*
const
__restrict__
p_reduce_dscale
,
const
B
iasDataType
*
const
__restrict__
p_reduce_dbias
,
const
DscaleDb
iasDataType
*
const
__restrict__
p_reduce_dbias
,
const
MeanVarDataType
*
const
__restrict__
p_mean
,
const
MeanVarDataType
*
const
__restrict__
p_mean
,
const
MeanVarDataType
*
const
__restrict__
p_inv_var
,
const
MeanVarDataType
*
const
__restrict__
p_inv_var
,
const
XDataType
*
const
__restrict__
p_x
,
const
XDataType
*
const
__restrict__
p_x
,
...
@@ -44,8 +44,8 @@ __global__ void kernel_reduce_second_half_batchnorm_backward_final(
...
@@ -44,8 +44,8 @@ __global__ void kernel_reduce_second_half_batchnorm_backward_final(
const
ScaleDataType
*
const
__restrict__
p_scale
,
const
ScaleDataType
*
const
__restrict__
p_scale
,
const
DyElementwiseOp
dy_elementwise_op
,
const
DyElementwiseOp
dy_elementwise_op
,
DxDataType
*
const
__restrict__
p_dx
,
DxDataType
*
const
__restrict__
p_dx
,
S
caleDataType
*
const
__restrict__
p_dscale
,
Ds
caleD
biasD
ataType
*
const
__restrict__
p_dscale
,
B
iasDataType
*
const
__restrict__
p_dbias
)
DscaleDb
iasDataType
*
const
__restrict__
p_dbias
)
{
{
GridwiseReduceSecondHalfBatchNormBackwardFinal_
::
Run
(
x_grid_desc_m_k
,
GridwiseReduceSecondHalfBatchNormBackwardFinal_
::
Run
(
x_grid_desc_m_k
,
dy_grid_desc_m_k
,
dy_grid_desc_m_k
,
...
@@ -76,7 +76,7 @@ template <typename XDataType,
...
@@ -76,7 +76,7 @@ template <typename XDataType,
typename
DxDataType
,
typename
DxDataType
,
typename
AccDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
typename
DyElementwiseOp
,
typename
XYGridDesc_M_K
,
typename
XYGridDesc_M_K
,
...
@@ -92,8 +92,8 @@ template <typename XDataType,
...
@@ -92,8 +92,8 @@ template <typename XDataType,
index_t
XSrcVectorSize
,
index_t
XSrcVectorSize
,
index_t
DySrcVectorSize
,
index_t
DySrcVectorSize
,
index_t
DxDstVectorSize
,
index_t
DxDstVectorSize
,
index_t
ScaleSrc
Dst
VectorSize
,
index_t
ScaleSrcVectorSize
,
index_t
B
iasDstVectorSize
,
index_t
DscaleDb
iasDstVectorSize
,
index_t
MeanVarSrcVectorSize
>
index_t
MeanVarSrcVectorSize
>
struct
GridwiseReduceSecondHalfBatchNormBackwardFinal
struct
GridwiseReduceSecondHalfBatchNormBackwardFinal
{
{
...
@@ -155,13 +155,13 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -155,13 +155,13 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
const
DscaleDbiasGridDesc_M_K
&
dscale_dbias_grid_desc_m_k
,
const
DscaleDbiasGridDesc_M_K
&
dscale_dbias_grid_desc_m_k
,
const
MeanVarGridDesc_M
&
mean_var_grid_desc_m
,
const
MeanVarGridDesc_M
&
mean_var_grid_desc_m
,
const
ScaleBiasGridDesc_M
&
scale_grid_desc_m
,
const
ScaleBiasGridDesc_M
&
scale_grid_desc_m
,
const
ScaleBiasGridDesc_M
&
bias_grid_desc_m
,
const
ScaleBiasGridDesc_M
&
dscale_d
bias_grid_desc_m
,
index_t
blkgroup_size
,
index_t
blkgroup_size
,
long_index_t
reduce_size
,
long_index_t
reduce_size
,
index_t
num_xy_k_block_tile_iteration
,
index_t
num_xy_k_block_tile_iteration
,
index_t
num_dscale_dbias_k_block_tile_iteration
,
index_t
num_dscale_dbias_k_block_tile_iteration
,
const
S
caleDataType
*
const
__restrict__
p_reduce_dscale
,
const
Ds
caleD
biasD
ataType
*
const
__restrict__
p_reduce_dscale
,
const
B
iasDataType
*
const
__restrict__
p_reduce_dbias
,
const
DscaleDb
iasDataType
*
const
__restrict__
p_reduce_dbias
,
const
MeanVarDataType
*
const
__restrict__
p_mean
,
const
MeanVarDataType
*
const
__restrict__
p_mean
,
const
MeanVarDataType
*
const
__restrict__
p_inv_var
,
const
MeanVarDataType
*
const
__restrict__
p_inv_var
,
const
XDataType
*
const
__restrict__
p_x
,
const
XDataType
*
const
__restrict__
p_x
,
...
@@ -169,8 +169,8 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -169,8 +169,8 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
const
ScaleDataType
*
const
__restrict__
p_scale
,
const
ScaleDataType
*
const
__restrict__
p_scale
,
const
DyElementwiseOp
dy_elementwise_op
,
const
DyElementwiseOp
dy_elementwise_op
,
DxDataType
*
const
__restrict__
p_dx
,
DxDataType
*
const
__restrict__
p_dx
,
S
caleDataType
*
const
__restrict__
p_dscale
,
Ds
caleD
biasD
ataType
*
const
__restrict__
p_dscale
,
B
iasDataType
*
const
__restrict__
p_dbias
)
DscaleDb
iasDataType
*
const
__restrict__
p_dbias
)
{
{
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
__shared__
AccDataType
p_reduce_work_buffer
[
BlockSize
];
...
@@ -222,8 +222,8 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -222,8 +222,8 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
// Step 1: do final reduction of dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// Step 1: do final reduction of dbias = sum(dy), dscale = sum(dy * (x-mean) * inv-variance)
// clang-format on
// clang-format on
auto
threadwise_dscale_load_m_k
=
auto
threadwise_dscale_
dbias_
load_m_k
=
ThreadwiseTensorSliceTransfer_v2
<
S
caleDataType
,
ThreadwiseTensorSliceTransfer_v2
<
Ds
caleD
biasD
ataType
,
AccDataType
,
AccDataType
,
DscaleDbiasGridDesc_M_K
,
DscaleDbiasGridDesc_M_K
,
decltype
(
thread_buffer_desc_m_1
),
decltype
(
thread_buffer_desc_m_1
),
...
@@ -238,54 +238,20 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -238,54 +238,20 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
thread_m_cluster_id
*
MThreadSliceSize
,
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
1
));
thread_k_cluster_id
*
1
));
auto
threadwise_dbias_load_m_k
=
auto
threadwise_dscale_dbias_store_m
=
ThreadwiseTensorSliceTransfer_v2
<
BiasDataType
,
AccDataType
,
DscaleDbiasGridDesc_M_K
,
decltype
(
thread_buffer_desc_m_1
),
ThreadBufferLengths_M_1
,
Sequence
<
0
,
1
>
,
1
,
1
,
1
,
true
>
(
dscale_dbias_grid_desc_m_k
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
1
));
auto
threadwise_dscale_store_m
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
ScaleDataType
,
decltype
(
thread_buffer_desc_m
),
ScaleBiasGridDesc_M
,
PassThroughOp
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
0
,
ScaleSrcDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
scale_grid_desc_m
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_dbias_store_m
=
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
decltype
(
thread_buffer_desc_m
),
decltype
(
thread_buffer_desc_m
),
ScaleBiasGridDesc_M
,
ScaleBiasGridDesc_M
,
PassThroughOp
,
PassThroughOp
,
ThreadBufferLengths_M
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
Sequence
<
0
>
,
0
,
0
,
B
iasDstVectorSize
,
DscaleDb
iasDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
InMemoryDataOperationEnum
::
Set
,
1
,
1
,
true
>
(
true
>
(
bias_grid_desc_m
,
dscale_d
bias_grid_desc_m
,
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
make_multi_index
(
blkgroup_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
PassThroughOp
{});
...
@@ -297,10 +263,10 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -297,10 +263,10 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
p_reduce_dbias
,
dscale_dbias_grid_desc_m_k
.
GetElementSpaceSize
());
p_reduce_dbias
,
dscale_dbias_grid_desc_m_k
.
GetElementSpaceSize
());
auto
dscale_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
auto
dscale_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dscale
,
scale_grid_desc_m
.
GetElementSpaceSize
());
p_dscale
,
d
scale_
dbias_
grid_desc_m
.
GetElementSpaceSize
());
auto
dbias_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
auto
dbias_global_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dbias
,
bias_grid_desc_m
.
GetElementSpaceSize
());
p_dbias
,
dscale_d
bias_grid_desc_m
.
GetElementSpaceSize
());
constexpr
auto
dscale_dbias_thread_copy_step_m_k
=
constexpr
auto
dscale_dbias_thread_copy_step_m_k
=
make_multi_index
(
0
,
KThreadClusterSize
*
1
);
make_multi_index
(
0
,
KThreadClusterSize
*
1
);
...
@@ -313,13 +279,13 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -313,13 +279,13 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_dscale_dbias_k_block_tile_iteration
;
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_dscale_dbias_k_block_tile_iteration
;
++
reducedTiles
)
++
reducedTiles
)
{
{
threadwise_dscale_load_m_k
.
Run
(
dscale_dbias_grid_desc_m_k
,
threadwise_dscale_
dbias_
load_m_k
.
Run
(
dscale_dbias_grid_desc_m_k
,
reduce_dscale_global_buf
,
reduce_dscale_global_buf
,
thread_buffer_desc_m_1
,
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
make_tuple
(
I0
,
I0
),
reduce_dscale_thread_buf
);
reduce_dscale_thread_buf
);
threadwise_dbias_load_m_k
.
Run
(
dscale_dbias_grid_desc_m_k
,
threadwise_
dscale_
dbias_load_m_k
.
Run
(
dscale_dbias_grid_desc_m_k
,
reduce_dbias_global_buf
,
reduce_dbias_global_buf
,
thread_buffer_desc_m_1
,
thread_buffer_desc_m_1
,
make_tuple
(
I0
,
I0
),
make_tuple
(
I0
,
I0
),
...
@@ -328,9 +294,7 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -328,9 +294,7 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
ThreadwiseReduce
::
Reduce
(
reduce_dscale_thread_buf
,
dscale_thread_buf
);
ThreadwiseReduce
::
Reduce
(
reduce_dscale_thread_buf
,
dscale_thread_buf
);
ThreadwiseReduce
::
Reduce
(
reduce_dbias_thread_buf
,
dbias_thread_buf
);
ThreadwiseReduce
::
Reduce
(
reduce_dbias_thread_buf
,
dbias_thread_buf
);
threadwise_dscale_load_m_k
.
MoveSrcSliceWindow
(
dscale_dbias_grid_desc_m_k
,
threadwise_dscale_dbias_load_m_k
.
MoveSrcSliceWindow
(
dscale_dbias_grid_desc_m_k
,
dscale_dbias_thread_copy_step_m_k
);
threadwise_dbias_load_m_k
.
MoveSrcSliceWindow
(
dscale_dbias_grid_desc_m_k
,
dscale_dbias_thread_copy_step_m_k
);
dscale_dbias_thread_copy_step_m_k
);
}
}
...
@@ -343,16 +307,16 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -343,16 +307,16 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
BlockwiseReduce
::
Reduce
(
reduce_work_buf
,
dbias_thread_buf
(
I
));
BlockwiseReduce
::
Reduce
(
reduce_work_buf
,
dbias_thread_buf
(
I
));
});
});
threadwise_dscale_store_m
.
Run
(
thread_buffer_desc_m
,
threadwise_dscale_
dbias_
store_m
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
make_tuple
(
I0
),
dscale_thread_buf
,
dscale_thread_buf
,
scale
_grid_desc_m
,
dscale_dbias
_grid_desc_m
,
dscale_global_buf
);
dscale_global_buf
);
threadwise_dbias_store_m
.
Run
(
thread_buffer_desc_m
,
threadwise_
dscale_
dbias_store_m
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
make_tuple
(
I0
),
dbias_thread_buf
,
dbias_thread_buf
,
bias_grid_desc_m
,
dscale_d
bias_grid_desc_m
,
dbias_global_buf
);
dbias_global_buf
);
// clang-format off
// clang-format off
...
@@ -418,7 +382,7 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
...
@@ -418,7 +382,7 @@ struct GridwiseReduceSecondHalfBatchNormBackwardFinal
ThreadBufferLengths_M
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
Sequence
<
0
>
,
0
,
0
,
ScaleSrc
Dst
VectorSize
,
ScaleSrcVectorSize
,
1
,
1
,
true
>
(
true
>
(
scale_grid_desc_m
,
scale_grid_desc_m
,
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment