conv_driver_v2_olc.cpp 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "conv_common.hpp"
#include "host_conv.hpp"
#include "device_tensor.hpp"
15

16
17
18
#include "olc_device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
#include "olc_device_dynamic_convolution_forward_implicit_gemm_v4r5_nchw_kcyx_nkhw.hpp"

19
20
21
#include "olc_device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw.hpp"
#include "olc_device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nhwc_kyxc_nhwk.hpp"

22
23
#define USE_CONV_FWD_V4R4_NCHW 1
#define USE_CONV_FWD_V4R5_NCHW 1
24
25
#define USE_CONV_FWD_V4R4_XDLOPS_NCHW 1
#define USE_CONV_FWD_V4R4_XDLOPS_NHWC 1
26
27
28
29
30
31
32

#include "conv_tunables.hpp"
#include "handle.hpp"
#include "hipCheck.hpp"

enum ConvForwardAlgo
{
33
34
35
36
    V4R4NCHW,    // 0
    V4R5NCHW,    // 1
    V4R4XDLNCHW, // 2
    V4R4XDLNHWC  // 3
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
};

int main(int argc, char* argv[])
{
    using namespace ck;
    using size_t = std::size_t;

    hipStream_t stream;
    olCompile::Handle* handle;

    MY_HIP_CHECK(hipStreamCreate(&stream));

    handle = new olCompile::Handle(stream);

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};
    constexpr auto I4 = Number<4>{};
    constexpr auto I5 = Number<5>{};
    constexpr auto I6 = Number<6>{};

    if(argc != 22)
    {
        printf("arg1 to 5: layout, algo, do_verification, init_method, do_log, nrepeat\n");
        printf("rest: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx\n");
        exit(1);
    }

    const ConvTensorLayout layout = static_cast<ConvTensorLayout>(atoi(argv[1]));
    const ConvForwardAlgo algo    = static_cast<ConvForwardAlgo>(atoi(argv[2]));
    const bool do_verification    = atoi(argv[3]);
    const int init_method         = atoi(argv[4]);
    const bool do_log             = atoi(argv[5]);
    const int nrepeat             = atoi(argv[6]);

    const index_t N  = atoi(argv[7]);
    const index_t K  = atoi(argv[8]);
    const index_t C  = atoi(argv[9]);
    const index_t Y  = atoi(argv[10]);
    const index_t X  = atoi(argv[11]);
    const index_t Hi = atoi(argv[12]);
    const index_t Wi = atoi(argv[13]);

    const index_t conv_stride_h   = atoi(argv[14]);
    const index_t conv_stride_w   = atoi(argv[15]);
    const index_t conv_dilation_h = atoi(argv[16]);
    const index_t conv_dilation_w = atoi(argv[17]);
    const index_t in_left_pad_h   = atoi(argv[18]);
    const index_t in_left_pad_w   = atoi(argv[19]);
    const index_t in_right_pad_h  = atoi(argv[20]);
    const index_t in_right_pad_w  = atoi(argv[21]);

    const index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const index_t XEff = (X - 1) * conv_dilation_w + 1;

    const index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

#if 1
    constexpr index_t in_vector_size = 1;
    using in_data_t                  = float;
    using acc_data_t                 = float;
    using out_data_t                 = float;
#elif 1
    constexpr index_t in_vector_size = 16;
    using in_data_t                  = int8_t;
    using acc_data_t                 = int32_t;
    using out_data_t                 = int8_t;
#endif

    std::vector<std::size_t> in_lengths_host(4), wei_lengths_host(4), out_lengths_host(4);

    switch(layout)
    {
    case ConvTensorLayout::NCHW:
        // NCHW
114
115
116
117
118
        in_lengths_host[0] = static_cast<std::size_t>(N);
        in_lengths_host[1] = static_cast<std::size_t>(C);
        in_lengths_host[2] = static_cast<std::size_t>(Hi);
        in_lengths_host[3] = static_cast<std::size_t>(Wi);

119
120
121
122
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(C);
        wei_lengths_host[2] = static_cast<std::size_t>(Y);
        wei_lengths_host[3] = static_cast<std::size_t>(X);
123

124
125
126
127
128
129
130
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(K);
        out_lengths_host[2] = static_cast<std::size_t>(Ho);
        out_lengths_host[3] = static_cast<std::size_t>(Wo);
        break;
    case ConvTensorLayout::NHWC:
        // NHWC
131
132
133
134
135
        in_lengths_host[0] = static_cast<std::size_t>(N);
        in_lengths_host[1] = static_cast<std::size_t>(Hi);
        in_lengths_host[2] = static_cast<std::size_t>(Wi);
        in_lengths_host[3] = static_cast<std::size_t>(C);

136
137
138
139
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(Y);
        wei_lengths_host[2] = static_cast<std::size_t>(X);
        wei_lengths_host[3] = static_cast<std::size_t>(C);
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(Ho);
        out_lengths_host[2] = static_cast<std::size_t>(Wo);
        out_lengths_host[3] = static_cast<std::size_t>(K);
        break;
    default: throw std::runtime_error("wrong! not implemented");
    }

    Tensor<in_data_t> in(in_lengths_host);
    Tensor<in_data_t> wei(wei_lengths_host);
    Tensor<out_data_t> out_host(out_lengths_host);
    Tensor<out_data_t> out_device(out_lengths_host);

    std::cout << "layout: " << layout << std::endl;
    ostream_HostTensorDescriptor(in.mDesc, std::cout << "in: ");
    ostream_HostTensorDescriptor(wei.mDesc, std::cout << "wei: ");
    ostream_HostTensorDescriptor(out_host.mDesc, std::cout << "out: ");
    print_array("InLeftPads", make_tuple(in_left_pad_h, in_left_pad_w));
    print_array("InRightPads", make_tuple(in_right_pad_h, in_right_pad_w));
    print_array("ConvStrides", make_tuple(conv_stride_h, conv_stride_w));
    print_array("ConvDilations", make_tuple(conv_dilation_h, conv_dilation_w));

    std::size_t num_thread = std::thread::hardware_concurrency();

165
    switch(init_method)
166
    {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    case 0:
        // no initialization
        break;
    case 1:
        in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 2:
        in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 3:
        in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 4:
        in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 5:
        in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
        break;
    default:
        in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei.GenerateTensorValue(gen_wei, num_thread);
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    }

    auto f_make_for_device_nchw = [&]() {
        const auto in_lengths_dev  = make_tuple(N, C, Hi, Wi);
        const auto wei_lengths_dev = make_tuple(K, C, Y, X);
        const auto out_lengths_dev = make_tuple(N, K, Ho, Wo);

        return make_tuple(in_lengths_dev, wei_lengths_dev, out_lengths_dev);
    };

    auto f_make_for_device_nhwc = [&]() {
        const auto in_lengths_dev  = make_tuple(N, Hi, Wi, C);
        const auto wei_lengths_dev = make_tuple(K, Y, X, C);
        const auto out_lengths_dev = make_tuple(N, Ho, Wo, K);

        return make_tuple(in_lengths_dev, wei_lengths_dev, out_lengths_dev);
    };

    const auto conv_strides   = make_tuple(conv_stride_h, conv_stride_w);
    const auto conv_dilations = make_tuple(conv_dilation_h, conv_dilation_w);
    const auto in_left_pads   = make_tuple(in_left_pad_h, in_left_pad_w);
    const auto in_right_pads  = make_tuple(in_right_pad_h, in_right_pad_w);

#if USE_CONV_FWD_V4R4_NCHW
    if(algo == ConvForwardAlgo::V4R4NCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        tunable_dyn_conv_fwd_v4r4_nchw_kcyx_nkhw* tunable =
            &default_tunable_dyn_conv_fwd_v4r4_nchw_kcyx_nkhw;

        device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw_olc<in_data_t,
                                                                                 acc_data_t,
                                                                                 out_data_t>(
            handle,
            tmp[I0],
            tmp[I1],
            tmp[I2],
            conv_strides,
            conv_dilations,
            in_left_pads,
            in_right_pads,
            in,
            wei,
            out_device,
            tunable,
            nrepeat);
    }
#endif

#if USE_CONV_FWD_V4R5_NCHW
    if(algo == ConvForwardAlgo::V4R5NCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        tunable_dyn_conv_fwd_v4r5_nchw_kcyx_nkhw* tunable =
            &default_tunable_dyn_conv_fwd_v4r5_nchw_kcyx_nkhw;

        device_dynamic_convolution_forward_implicit_gemm_v4r5_nchw_kcyx_nkhw_olc<in_data_t,
                                                                                 acc_data_t,
                                                                                 out_data_t>(
            handle,
            tmp[I0],
            tmp[I1],
            tmp[I2],
            conv_strides,
            conv_dilations,
            in_left_pads,
            in_right_pads,
            in,
            wei,
            out_device,
            tunable,
            nrepeat);
    }
#endif

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#if USE_CONV_FWD_V4R4_XDLOPS_NCHW
    if(algo == ConvForwardAlgo::V4R4XDLNCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        tunable_dyn_conv_fwd_v4r4_xdlops_nchw_kcyx_nkhw* tunable =
            &default_tunable_dyn_conv_fwd_v4r4_xdlops_nchw_kcyx_nkhw;

        device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nchw_kcyx_nkhw_olc<in_data_t,
                                                                                        acc_data_t,
                                                                                        out_data_t>(
            handle,
            tmp[I0],
            tmp[I1],
            tmp[I2],
            conv_strides,
            conv_dilations,
            in_left_pads,
            in_right_pads,
            in,
            wei,
            out_device,
            tunable,
            nrepeat);
    }
#endif

#if USE_CONV_FWD_V4R4_XDLOPS_NHWC
    if(algo == ConvForwardAlgo::V4R4XDLNHWC)
    {
        if(layout != ConvTensorLayout::NHWC)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nhwc();

        tunable_dyn_conv_fwd_v4r4_xdlops_nhwc_kyxc_nhwk* tunable =
            &default_tunable_dyn_conv_fwd_v4r4_xdlops_nhwc_kyxc_nhwk;

        device_dynamic_convolution_forward_implicit_gemm_v4r4_xdlops_nhwc_kyxc_nhwk_olc<in_data_t,
                                                                                        acc_data_t,
                                                                                        out_data_t>(
            handle,
            tmp[I0],
            tmp[I1],
            tmp[I2],
            conv_strides,
            conv_dilations,
            in_left_pads,
            in_right_pads,
            in,
            wei,
            out_device,
            tunable,
            nrepeat);
    }
#endif

348
349
    if(do_verification)
    {
350
351
352
353
354
355
356
357
        host_direct_convolution(in,
                                wei,
                                out_host,
                                make_tuple(conv_stride_h, conv_stride_w),
                                make_tuple(conv_dilation_h, conv_dilation_w),
                                make_tuple(in_left_pad_h, in_left_pad_w),
                                make_tuple(in_right_pad_h, in_right_pad_w),
                                layout);
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

        check_error(out_host, out_device);

        if(do_log)
        {
            LogRange(std::cout << "in : ", in.mData, ",") << std::endl;
            LogRange(std::cout << "wei: ", wei.mData, ",") << std::endl;
            LogRange(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
            LogRange(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
        }
    }

    delete handle;
    MY_HIP_CHECK(hipStreamDestroy(stream));
}