driver.cpp 34.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
7
8
#include "config.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "device.hpp"
Chao Liu's avatar
Chao Liu committed
9
#include "conv_common.hpp"
Chao Liu's avatar
Chao Liu committed
10
#include "device_convolution_direct_v2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
11
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
12
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
15
#include "device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
16

17
18
using namespace ck;

Chao Liu's avatar
Chao Liu committed
19
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
20
21
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
22
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
23
    {
Chao Liu's avatar
Chao Liu committed
24
        return 1;
Chao Liu's avatar
Chao Liu committed
25
26
27
    }
};

Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
33
34
35
36
37
38
39
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

40
41
42
43
44
45
46
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

47
        auto f_acc = [](auto a, auto b) { return 100 * a + b; };
48

49
        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
50
51
52
    }
};

Chao Liu's avatar
Chao Liu committed
53
54
55
56
57
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
58
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
59
60
61
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
62
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
63
64
65
66
67
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
74
75
76
77
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
92
93
94
95
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
96
97
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
98
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
99
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
100
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
101
102
103
104
105
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

106
107
108
109
110
111
112
template <class TIn,
          class TWei,
          class TOut,
          class ConvStrides,
          class ConvDilations,
          class LowerPads,
          class UpperPads>
113
114
115
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
116
117
                             ConvStrides,
                             ConvDilations,
118
119
                             LowerPads,
                             UpperPads)
Chao Liu's avatar
Chao Liu committed
120
{
Chao Liu's avatar
Chao Liu committed
121
122
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
123

Chao Liu's avatar
Chao Liu committed
124
125
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
126

Chao Liu's avatar
Chao Liu committed
127
128
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
129
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
130
        {
Chao Liu's avatar
Chao Liu committed
131
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
132
            {
133
                int hi = ho * ConvStrides{}[0] + y * ConvDilations{}[0] - h_pad_low;
Chao Liu's avatar
Chao Liu committed
134
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
135
                {
136
                    int wi = wo * ConvStrides{}[1] + x * ConvDilations{}[1] - w_pad_low;
137
138
139
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
140
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
141
142
143
144
145
146
147
148
                        if(n == 0 && k == 0 &&  ho == 0 && wo == 0)
                        {
                            //std::cout << "cpu " << c << "," << hi << "," << wi << " * " << 
                            //          << c << "," << y << "," << x << " = "
                            //          << in_nchw(n,c,hi,wi) << " * " << wei_kcyx(k, c, y, x) << std::endl;
                           // printf(" cpu %d,%d,%d * %d,%d,%d = %f * %f\n", 
                           //         c, hi, wi, c, y, x, double(in_nchw(n,c,hi,wi)), double(wei_kcyx(k, c, y, x)));
                        }
149
                    }
Chao Liu's avatar
Chao Liu committed
150
151
152
                }
            }
        }
153
        out_nkhw(n, k, ho, wo) = v;
154
155
        if(n == 0 && k == 0 && ho == 0 && wo == 0)
        printf("cpu %d,%d,%d,%d = %f", n,k, ho,wo,v);
Chao Liu's avatar
Chao Liu committed
156
157
158
    };

    auto f_par = make_ParallelTensorFunctor(f,
159
160
161
162
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
163

Chao Liu's avatar
Chao Liu committed
164
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
165
166
}

167
168
169
170
171
172
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
173
{
Chao Liu's avatar
Chao Liu committed
174
175
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
176

Chao Liu's avatar
Chao Liu committed
177
178
179
180
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
181

Chao Liu's avatar
Chao Liu committed
182
183
184
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
185

186
187
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
188

Chao Liu's avatar
Chao Liu committed
189
190
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
191

Chao Liu's avatar
Chao Liu committed
192
193
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
194

Chao Liu's avatar
Chao Liu committed
195
196
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
197

Chao Liu's avatar
Chao Liu committed
198
199
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
200

201
202
203
204
205
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
206

Chao Liu's avatar
Chao Liu committed
207
208
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
209
        {
Chao Liu's avatar
Chao Liu committed
210
211
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
212
            {
Chao Liu's avatar
Chao Liu committed
213
                int wi = WoPerTile * wtile + i - w_pad_low;
214
215
216
217

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
218
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
219
220
221
                }
                else
                {
222
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
223
                }
Chao Liu's avatar
Chao Liu committed
224
225
226
227
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
280
281
282
    };

    auto f_wei_transform = [&](auto k, auto c) {
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
338
339
    };

Chao Liu's avatar
Chao Liu committed
340
341
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
342
        {
Chao Liu's avatar
Chao Liu committed
343
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
344
345
346
347
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
348
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
349
350
                }

Chao Liu's avatar
Chao Liu committed
351
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
352
353
354
355
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
381
382
    };

Chao Liu's avatar
Chao Liu committed
383
384
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
385
        {
Chao Liu's avatar
Chao Liu committed
386
387
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
388
            {
389
                std::size_t wo = WoPerTile * wtile + i;
390
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
391
392
393
394
395
396
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
397
398
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
399
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
400
401
402
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
403
404
405
406
407
408
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
409
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
410
411
412
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
413
414
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
415
416
417
418
419
420
421
422
423
424
425
426
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
427
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
428
{
Chao Liu's avatar
Chao Liu committed
429
430
#if 0
    constexpr index_t N  = 8;
Chao Liu's avatar
Chao Liu committed
431
    constexpr index_t C  = 16;
Chao Liu's avatar
Chao Liu committed
432
433
434
435
436
437
438
439
    constexpr index_t HI = 3;
    constexpr index_t WI = 18;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
440
#elif 0
441
    // 3x3, 34x34
442
    constexpr index_t N  = 128;
443
    constexpr index_t C  = 256;
444
445
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
446
447
448
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
449

450
451
452
    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
453
454
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
455
#elif 0
456
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
457
458
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
459
460
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
Chao Liu's avatar
Chao Liu committed
461
462
463
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
464
465
466

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
467
#elif 0
Chao Liu's avatar
Chao Liu committed
468
469
470
471
472
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
473
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
474
475
476
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

Chao Liu's avatar
Chao Liu committed
477
    using ConvStrides   = Sequence<1, 1>;
478
479
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
480
481
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
482
#elif 0
Chao Liu's avatar
Chao Liu committed
483
    // 1x1 filter, 28x28 image
484
485
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
Chao Liu's avatar
Chao Liu committed
486
487
488
489
490
491
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
492
493
494
    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
495
496
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
497
498
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
499
500
501
502
503
504
505
506
507
508
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
509
510
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
511
512
513
514
515
516
517
518
519
520
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
521
#elif 0
522
523
524
525
526
527
528
529
530
531
532
    // 5x5 filter, 20x86 image
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
533
534
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
535
536
537
538
539
540
541
542
543
544
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
545
546
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
547
548
549
550
551
552
553
554
555
556
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
557
#elif 0
558
    // 3x3 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
559
    constexpr index_t N  = 128;
560
    constexpr index_t C  = 256;
Chao Liu's avatar
Chao Liu committed
561
562
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
563
564
565
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
566
567
568

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
569
#elif 0
570
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
571
572
573
574
575
576
577
578
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

579
580
581
    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
582
583
584
585
586
587
588
589
590
591
592
593
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 7x7 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 2048;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

594
595
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
596
#elif 0
597
598
    // 1x1 filter, 73x73 image
    constexpr index_t N  = 128;
Chao Liu's avatar
Chao Liu committed
599
    constexpr index_t C  = 512;
600
601
602
603
604
605
    constexpr index_t HI = 73;
    constexpr index_t WI = 73;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
606
607
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
608
#elif 0
Chao Liu's avatar
Chao Liu committed
609
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
610
    // cudnn@V100 68%, ck@V100 72%, ck@P100 52%, ck@VII 42%
Chao Liu's avatar
Chao Liu committed
611
612
613
614
615
616
617
618
619
620
621
622
623
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
624
#elif 0
Chao Liu's avatar
Chao Liu committed
625
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
626
    // cudnn@V100 77%, ck@V100 76%, ck@P100 79%, ck@VII 51%
Chao Liu's avatar
Chao Liu committed
627
628
629
630
631
632
633
634
635
636
637
638
639
    constexpr index_t N  = 128;
    constexpr index_t C  = 2048;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
640
#elif 0
Chao Liu's avatar
Chao Liu committed
641
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
642
    // cudnn@V100 82%, ck@V100 76%, ck@P100 67%, ck@VII 64%
Chao Liu's avatar
Chao Liu committed
643
644
645
646
647
648
649
650
651
652
653
654
655
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
656
#elif 0
Chao Liu's avatar
Chao Liu committed
657
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
658
    // cudnn@V100 83%, ck@V100 75%, ck@P100 78%, ck@VII 65%
Chao Liu's avatar
Chao Liu committed
659
660
661
662
663
664
665
666
667
668
669
670
671
    constexpr index_t N  = 128;
    constexpr index_t C  = 1280;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
672
#elif 0
Chao Liu's avatar
Chao Liu committed
673
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
674
    // cudnn@V100 62%, ck@V100 68%, ck@P100 70%, ck@VII 50%
Chao Liu's avatar
Chao Liu committed
675
676
677
678
679
680
681
682
683
684
685
686
687
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
688
#elif 0
Chao Liu's avatar
Chao Liu committed
689
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
690
    // cudnn@V100 74%, ck@V100 57%, ck@P100 78%, ck@VII 61%
Chao Liu's avatar
Chao Liu committed
691
692
693
694
695
696
697
698
699
700
701
702
703
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
704
#elif 0
Chao Liu's avatar
Chao Liu committed
705
    // 1x1 filter, 28x28 image
Chao Liu's avatar
Chao Liu committed
706
    // cudnn@V100 86%, ck@V100 84%, ck@P100 80%, ck@VII 69%
Chao Liu's avatar
Chao Liu committed
707
708
709
710
711
712
713
714
715
716
717
718
719
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
720
#elif 0
Chao Liu's avatar
Chao Liu committed
721
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
722
    // cudnn@V100 71%, ck@V100 55%, ck@P100 70%, ck@VII 62%
Chao Liu's avatar
Chao Liu committed
723
724
725
726
727
728
729
730
731
732
733
734
735
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
736
#elif 0
Chao Liu's avatar
Chao Liu committed
737
    // 3x3 filter, 2x2 stride, 35x35 input, 17x17 output
Chao Liu's avatar
Chao Liu committed
738
    // cudnn@V100 90%, ck@V100 93%, ck@P100 83%, ck@VII 81%
Chao Liu's avatar
Chao Liu committed
739
740
741
742
743
744
745
746
747
748
749
750
751
    constexpr index_t N  = 128;
    constexpr index_t C  = 288;
    constexpr index_t HI = 35;
    constexpr index_t WI = 35;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
752
#elif 0
Chao Liu's avatar
Chao Liu committed
753
    // 1x1 filter, 17x17 input
Chao Liu's avatar
Chao Liu committed
754
    // cudnn@V100 81%, ck@V100 76%, ck@P100 70%, ck@VII 76%
Chao Liu's avatar
Chao Liu committed
755
756
757
758
759
760
761
762
763
764
765
766
767
    constexpr index_t N  = 128;
    constexpr index_t C  = 768;
    constexpr index_t HI = 17;
    constexpr index_t WI = 17;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
768
#elif 0
Chao Liu's avatar
Chao Liu committed
769
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
770
    // cudnn@V100 73%, ck@V100 71%, ck@P100 70%, ck@VII 64%
Chao Liu's avatar
Chao Liu committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
786
    // cudnn@V100 73%, ck@V100 72%, ck@P100 79%, ck@VII 75%
Chao Liu's avatar
Chao Liu committed
787
788
789
790
791
792
793
794
795
796
797
798
799
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
800
#elif 0
Chao Liu's avatar
Chao Liu committed
801
    // 1x1 filter, 7x7 image
802
803
804
805
806
807
808
    constexpr index_t N  = 32;
    constexpr index_t C  = 128;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 192;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
809
810
811
812

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
813
814
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
815
816
817
818
819
820
821
822
823
824
825
826
827
828
#elif 1
    constexpr index_t N  = 8;
    constexpr index_t C  = 64;
    constexpr index_t HI = 4;
    constexpr index_t WI = 4;
    constexpr index_t K  = 64;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;    
Chao Liu's avatar
Chao Liu committed
829
#endif
Chao Liu's avatar
Chao Liu committed
830

831
832
833
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
834
835
    auto in_nchw_desc  = make_ConstantTensorDescriptor_packed(Sequence<N, C, HI, WI>{});
    auto wei_kcyx_desc = make_ConstantTensorDescriptor_packed(Sequence<K, C, Y, X>{});
836
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
837
        in_nchw_desc, wei_kcyx_desc, ConvStrides{}, ConvDilations{}, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
838

Chao Liu's avatar
Chao Liu committed
839
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
840
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
841
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
842

843
844
    using in_data_t  = half;
    using out_data_t = half;
845
846
847
848
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
849

Chao Liu's avatar
Chao Liu committed
850
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
851

Chao Liu's avatar
Chao Liu committed
852
853
854
855
856
857
858
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
859
    index_t nrepeat      = atoi(argv[2]);
860
861
862

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
863
#if 0
864
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
865
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
866
867
868
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
869
870
871
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
872
#elif 1
873
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
874
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
875
#elif 0
876
877
878
879
880
881
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
882
#endif
883
    }
Chao Liu's avatar
Chao Liu committed
884

Chao Liu's avatar
Chao Liu committed
885
#if 1
Chao Liu's avatar
Chao Liu committed
886
#if 0
Chao Liu's avatar
Chao Liu committed
887
    device_convolution_direct_v2_nchw_kcyx_nkhw
Chao Liu's avatar
Chao Liu committed
888
#elif 0
889
    device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
890
#elif 0
Chao Liu's avatar
Chao Liu committed
891
    device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw
892
#elif 0
Chao Liu's avatar
Chao Liu committed
893
    device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
894
#elif 0
Chao Liu's avatar
Chao Liu committed
895
896
    device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw
#elif 1
897
    device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw
898
#endif
899
900
901
902
903
904
905
906
907
    (in_nchw_desc,
     in_nchw,
     wei_kcyx_desc,
     wei_kcyx,
     out_nkhw_desc,
     out_nkhw_device,
     ConvStrides{},
     ConvDilations{},
     nrepeat);
908

909
#elif 0
Chao Liu's avatar
Chao Liu committed
910
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
Chao Liu's avatar
Chao Liu committed
911
                                                             in_nchw,
Chao Liu's avatar
Chao Liu committed
912
913
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
Chao Liu's avatar
Chao Liu committed
914
915
916
917
918
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
919
#endif
Chao Liu's avatar
Chao Liu committed
920

921
    if(do_verification)
922
    {
923
#if 0
924
925
        if(Y == 3 && X == 3 && ConvStrides{}[0] == 1 && ConvStrides{}[1] == 1 &&
           ConvDilations{}[0] == 1 && ConvDilations{}[1] == 1)
926
        {
Chao Liu's avatar
Chao Liu committed
927
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
928
929
        }
        else
Chao Liu's avatar
Chao Liu committed
930
#endif
931
        {
932
933
934
935
936
937
938
            host_direct_convolution(in_nchw,
                                    wei_kcyx,
                                    out_nkhw_host,
                                    ConvStrides{},
                                    ConvDilations{},
                                    lower_pads,
                                    upper_pads);
939
940
        }
        check_error(out_nkhw_host, out_nkhw_device);
941
        printf("gpu value %f", double(out_nkhw_device.mData[0]));
Chao Liu's avatar
Chao Liu committed
942

Chao Liu's avatar
Chao Liu committed
943
#if 0
944
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
945
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
946
947
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
948
#endif
949
    }
950
}