profile_gemm_gelu_impl.hpp 9.63 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#pragma once

#include <iomanip>

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

using DeviceGemmGeluPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::FastGelu>;

void add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGemmGeluPtr>&);
void add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGemmGeluPtr>&);
void add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
    std::vector<DeviceGemmGeluPtr>&);
void add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
    std::vector<DeviceGemmGeluPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
int profile_gemm_gelu_impl(int do_verification,
                           int init_method,
                           bool do_log,
                           bool time_kernel,
                           int M,
                           int N,
                           int K,
                           int StrideA,
                           int StrideB,
                           int StrideC)
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Chao Liu's avatar
Chao Liu committed
78
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Chao Liu's avatar
Chao Liu committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;

    std::size_t num_thread = 1;
    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::FastGelu;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
106
107
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmGeluPtr>
        device_op_ptrs;
Chao Liu's avatar
Chao Liu committed
108
109
110
111
112
113
114
115
116

    if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
                 is_same_v<CDataType, half_t>)
    {
        if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
                     is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
                     is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
        {
            ck::tensor_operation::device::device_gemm_instance::
Chao Liu's avatar
Chao Liu committed
117
                add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(device_op_ptrs);
Chao Liu's avatar
Chao Liu committed
118
119
120
121
122
123
        }
        else if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
                          is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
                          is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
        {
            ck::tensor_operation::device::device_gemm_instance::
Chao Liu's avatar
Chao Liu committed
124
                add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(device_op_ptrs);
Chao Liu's avatar
Chao Liu committed
125
126
127
128
129
130
        }
        else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
                          is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
                          is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
        {
            ck::tensor_operation::device::device_gemm_instance::
Chao Liu's avatar
Chao Liu committed
131
                add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(device_op_ptrs);
Chao Liu's avatar
Chao Liu committed
132
133
134
135
136
137
        }
        else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
                          is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
                          is_same_v<CLayout, tensor_layout::gemm::RowMajor>)
        {
            ck::tensor_operation::device::device_gemm_instance::
Chao Liu's avatar
Chao Liu committed
138
                add_device_gemm_gelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(device_op_ptrs);
Chao Liu's avatar
Chao Liu committed
139
140
141
        }
    }

Chao Liu's avatar
Chao Liu committed
142
143
144
145
    std::cout << "found " << device_op_ptrs.size() << " instances" << std::endl;

    // run reference
    if(do_verification)
Chao Liu's avatar
Chao Liu committed
146
    {
Chao Liu's avatar
Chao Liu committed
147
148
149
150
151
152
153
154
155
        using ReferenceOpInstance = ck::tensor_operation::host::
            ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;

        auto ref_op       = ReferenceOpInstance{};
        auto ref_invoker  = ref_op.MakeInvoker();
        auto ref_argument = ref_op.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
Chao Liu's avatar
Chao Liu committed
156
157
    }

Chao Liu's avatar
Chao Liu committed
158
159
160
161
162
163
164
165
    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    std::string best_device_op_name;
Chao Liu's avatar
Chao Liu committed
166
167
168
169
170
171
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    bool pass = true;

Chao Liu's avatar
Chao Liu committed
172
173
    // profile device operation instances
    for(auto& device_op_ptr : device_op_ptrs)
Chao Liu's avatar
Chao Liu committed
174
    {
Chao Liu's avatar
Chao Liu committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        auto argument_ptr = device_op_ptr->MakeArgumentPointer(
            static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
            M,
            N,
            K,
            StrideA,
            StrideB,
            StrideC,
            a_element_op,
            b_element_op,
            c_element_op);

        auto invoker_ptr = device_op_ptr->MakeInvokerPointer();

        std::string device_op_name = device_op_ptr->GetTypeString();

        if(device_op_ptr->IsSupportedArgument(argument_ptr.get()))
Chao Liu's avatar
Chao Liu committed
194
        {
Chao Liu's avatar
Chao Liu committed
195
            // re-init C to zero before profiling a kernel
Chao Liu's avatar
Chao Liu committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            c_device_buf.SetZero();

            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

            std::size_t flop = std::size_t(2) * M * N * K;

            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
211
                      << gb_per_sec << " GB/s, " << device_op_name << std::endl;
Chao Liu's avatar
Chao Liu committed
212
213
214

            if(tflops > best_tflops)
            {
Chao Liu's avatar
Chao Liu committed
215
216
217
218
                best_device_op_name = device_op_name;
                best_tflops         = tflops;
                best_ave_time       = ave_time;
                best_gb_per_sec     = gb_per_sec;
Chao Liu's avatar
Chao Liu committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                pass = pass &&
                       ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
241
            std::cout << device_op_name << " does not support this problem" << std::endl;
Chao Liu's avatar
Chao Liu committed
242
243
244
245
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
246
              << best_gb_per_sec << " GB/s, " << best_device_op_name << std::endl;
Chao Liu's avatar
Chao Liu committed
247
248
249
250
251
252

    return pass ? 0 : 1;
}

} // namespace profiler
} // namespace ck