cgemm_util.hpp 20.4 KB
Newer Older
myamlak's avatar
myamlak committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_cgemm.hpp"
#include "tensor_layout.hpp"

namespace ck {
namespace cgemm_util {

struct CGemmParams
{
    CGemmParams()
        : M(1024), N(1024), K(1024), StrideA(1024), StrideB(1024), StrideC(1024), alpha(1), beta(0)
    {
    }

    ck::index_t M;
    ck::index_t N;
    ck::index_t K;

    ck::index_t StrideA;
    ck::index_t StrideB;
    ck::index_t StrideC;

    float alpha;
    float beta;
};

template <typename CGemmInstance,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunHostCGEMM(const Tensor<ADataType>& A_real,
                  const Tensor<ADataType>& A_imag,
                  const Tensor<BDataType>& B_real,
                  const Tensor<BDataType>& B_imag,
                  Tensor<CDataType>& C_real,
                  Tensor<CDataType>& C_imag,
                  AElementwiseOperation a_element_op,
                  BElementwiseOperation b_element_op,
                  CElementwiseOperation c_element_op)
{
    auto ref_cgemm   = CGemmInstance{};
    auto ref_invoker = ref_cgemm.MakeInvoker();

    auto ref_argument = ref_cgemm.MakeArgument(
        A_real, A_imag, B_real, B_imag, C_real, C_imag, a_element_op, b_element_op, c_element_op);

    ref_invoker.Run(ref_argument);
}

template <typename DeviceCGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunDeviceCGEMM(DeviceCGemmPtr_& cgemmPtr,
                    const ck::cgemm_util::CGemmParams& params,
                    const Tensor<ADataType>& A_real,
                    const Tensor<ADataType>& A_imag,
                    const Tensor<BDataType>& B_real,
                    const Tensor<BDataType>& B_imag,
                    Tensor<CDataType>& C_real,
                    Tensor<CDataType>& C_imag,
                    AElementwiseOperation a_element_op,
                    BElementwiseOperation b_element_op,
                    CElementwiseOperation c_element_op)
{
myamlak's avatar
myamlak committed
79
80
81
82
83
84
    DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * A_real.mDesc.GetElementSpace());
    DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * A_imag.mDesc.GetElementSpace());
    DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * B_real.mDesc.GetElementSpace());
    DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * B_imag.mDesc.GetElementSpace());
    DeviceMem c_m_n_real_device_buf(sizeof(CDataType) * C_real.mDesc.GetElementSpace());
    DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) * C_imag.mDesc.GetElementSpace());
myamlak's avatar
myamlak committed
85
86
    DeviceMem workspace_device_buf(cgemmPtr->GetWorkspaceSize(
        params.M, params.N, params.K, params.StrideA, params.StrideB, params.StrideC));
myamlak's avatar
myamlak committed
87
88
89
90
91

    a_m_k_real_device_buf.ToDevice(A_real.mData.data());
    a_m_k_imag_device_buf.ToDevice(A_imag.mData.data());
    b_k_n_real_device_buf.ToDevice(B_real.mData.data());
    b_k_n_imag_device_buf.ToDevice(B_imag.mData.data());
myamlak's avatar
myamlak committed
92
93
94
95

    auto invoker_ptr  = cgemmPtr->MakeInvokerPointer();
    auto argument_ptr = cgemmPtr->MakeArgumentPointer(
        static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
96
        static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
97
98
99
100
        static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
        static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
        static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
        static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
101
        static_cast<CDataType*>(workspace_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        params.M,
        params.N,
        params.K,
        params.StrideA,
        params.StrideB,
        params.StrideC,
        a_element_op,
        b_element_op,
        c_element_op);

    if(!cgemmPtr->IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error(
            "wrong! device_cgemm with the specified compilation parameters does "
            "not support this CGEMM problem");
    }

    invoker_ptr->Run(argument_ptr.get());
    c_m_n_real_device_buf.FromDevice(C_real.mData.data());
    c_m_n_imag_device_buf.FromDevice(C_imag.mData.data());
}

template <typename DeviceCGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestCGemm
{
    auto PrepareCGemmTensor(const ck::cgemm_util::CGemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        Tensor<ADataType> a_m_k_real(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<ADataType> a_m_k_imag(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BDataType> b_k_n_real(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<BDataType> b_k_n_imag(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<CDataType> c_m_n_real_host_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_imag_host_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_real_device_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_imag_device_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        auto f_generate_tensor_value = [](auto& tensor, auto type) {
            using dataType = decltype(type);

            tensor.GenerateTensorValue(GeneratorTensor_2<dataType>{-5, 5});
        };

        f_generate_tensor_value(a_m_k_real, ADataType{});
        f_generate_tensor_value(a_m_k_imag, ADataType{});
        f_generate_tensor_value(b_k_n_real, BDataType{});
        f_generate_tensor_value(b_k_n_imag, BDataType{});

        return std::make_tuple(a_m_k_real,
                               a_m_k_imag,
                               b_k_n_real,
                               b_k_n_imag,
                               c_m_n_real_host_result,
                               c_m_n_imag_host_result,
                               c_m_n_real_device_result,
myamlak's avatar
myamlak committed
187
                               c_m_n_imag_device_result);
myamlak's avatar
myamlak committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    }

    auto operator()(DeviceCGemmPtr_& cgemmPtr)
    {
        std::cout << "ALayout = " << ALayout{}.name << ", BLayout = " << BLayout{}.name
                  << ", CLayout = " << CLayout{}.name << std::endl;
        std::cout << cgemmPtr->GetTypeString() << std::endl;

        // Arrange
        ck::cgemm_util::CGemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors = PrepareCGemmTensor(params);

        const Tensor<ADataType>& a_real  = std::get<0>(host_tensors);
        const Tensor<ADataType>& a_imag  = std::get<1>(host_tensors);
        const Tensor<BDataType>& b_real  = std::get<2>(host_tensors);
        const Tensor<BDataType>& b_imag  = std::get<3>(host_tensors);
        Tensor<CDataType>& c_host_real   = std::get<4>(host_tensors);
        Tensor<CDataType>& c_host_imag   = std::get<5>(host_tensors);
        Tensor<CDataType>& c_device_real = std::get<6>(host_tensors);
        Tensor<CDataType>& c_device_imag = std::get<7>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceCGemm<ADataType,
                                                       BDataType,
                                                       CDataType,
                                                       AElementwiseOperation,
                                                       BElementwiseOperation,
                                                       CElementwiseOperation>;
        ck::cgemm_util::RunHostCGEMM<ReferenceGemmInstance>(a_real,
                                                            a_imag,
                                                            b_real,
                                                            b_imag,
                                                            c_host_real,
                                                            c_host_imag,
                                                            a_element_op,
                                                            b_element_op,
                                                            c_element_op);

        // Act
        ck::cgemm_util::RunDeviceCGEMM(cgemmPtr,
                                       params,
                                       a_real,
                                       a_imag,
                                       b_real,
                                       b_imag,
                                       c_device_real,
                                       c_device_imag,
                                       a_element_op,
                                       b_element_op,
                                       c_element_op);

        // Assert
        bool res = false;
        if(std::is_same<CDataType, float>::value)
        {
254
255
256
257
258
259
260
            const bool res_real = ck::utils::check_err(
                c_device_real.mData, c_host_real.mData, "Error: incorrect results in real part!");
            const bool res_imag =
                ck::utils::check_err(c_device_imag.mData,
                                     c_host_imag.mData,
                                     "Error: incorrect results in imaginary part!");
            res = res_real && res_imag;
myamlak's avatar
myamlak committed
261
262
263
264
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, ck::half_t>::value)
        {
265
266
267
268
269
270
271
            const bool res_real = ck::utils::check_err(
                c_device_real.mData, c_host_real.mData, "Error: incorrect results in real part!");
            const bool res_imag =
                ck::utils::check_err(c_device_imag.mData,
                                     c_host_imag.mData,
                                     "Error: incorrect results in imaginary part!");
            res = res_real && res_imag;
myamlak's avatar
myamlak committed
272
273
274
275
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, int8_t>::value)
        {
276
277
278
279
280
281
282
            const bool res_real = ck::utils::check_err(
                c_device_real.mData, c_host_real.mData, "Error: incorrect results in real part!");
            const bool res_imag =
                ck::utils::check_err(c_device_imag.mData,
                                     c_host_imag.mData,
                                     "Error: incorrect results in imaginary part!");
            res = res_real && res_imag;
myamlak's avatar
myamlak committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }

        return res;
    }
};

template <typename DeviceCGemmPtr_,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestCGemmBF16
{
    using BF16 = ck::bhalf_t;

    auto PrepareCGemmTensorBF16(const ck::cgemm_util::CGemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        // use fp32 host kernel to verify bf16 device kernel
        Tensor<BF16> a_m_k_real_bf16(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BF16> a_m_k_imag_bf16(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BF16> b_k_n_real_bf16(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<BF16> b_k_n_imag_bf16(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<BF16> c_m_n_real_device_bf16(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<BF16> c_m_n_imag_device_bf16(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        Tensor<float> a_m_k_real_fp32(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<float> a_m_k_imag_fp32(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<float> b_k_n_real_fp32(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<float> b_k_n_imag_fp32(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
myamlak's avatar
myamlak committed
339
        Tensor<float> c_m_n_real_host_fp32(
myamlak's avatar
myamlak committed
340
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
myamlak's avatar
myamlak committed
341
        Tensor<float> c_m_n_imag_host_fp32(
myamlak's avatar
myamlak committed
342
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
myamlak's avatar
myamlak committed
343
        Tensor<float> c_m_n_real_device_fp32(
myamlak's avatar
myamlak committed
344
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
myamlak's avatar
myamlak committed
345
        Tensor<float> c_m_n_imag_device_fp32(
myamlak's avatar
myamlak committed
346
347
348
349
350
351
352
353
354
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        a_m_k_real_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
        a_m_k_imag_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
        b_k_n_real_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
        b_k_n_imag_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});

        bf16_to_f32_(a_m_k_real_bf16, a_m_k_real_fp32);
        bf16_to_f32_(a_m_k_imag_bf16, a_m_k_imag_fp32);
myamlak's avatar
myamlak committed
355
356
        bf16_to_f32_(b_k_n_real_bf16, b_k_n_real_fp32);
        bf16_to_f32_(b_k_n_imag_bf16, b_k_n_imag_fp32);
myamlak's avatar
myamlak committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370

        return std::make_tuple(a_m_k_real_bf16,
                               a_m_k_imag_bf16,
                               b_k_n_real_bf16,
                               b_k_n_imag_bf16,
                               c_m_n_real_device_bf16,
                               c_m_n_imag_device_bf16,
                               a_m_k_real_fp32,
                               a_m_k_imag_fp32,
                               b_k_n_real_fp32,
                               b_k_n_imag_fp32,
                               c_m_n_real_host_fp32,
                               c_m_n_imag_host_fp32,
                               c_m_n_real_device_fp32,
myamlak's avatar
myamlak committed
371
                               c_m_n_imag_device_fp32);
myamlak's avatar
myamlak committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    }

    auto operator()(DeviceCGemmPtr_& cgemmPtr)
    {
        // Arrange
        ck::cgemm_util::CGemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors                 = PrepareCGemmTensorBF16(params);
        const Tensor<BF16>& a_real_bf16   = std::get<0>(host_tensors);
        const Tensor<BF16>& a_imag_bf16   = std::get<1>(host_tensors);
        const Tensor<BF16>& b_real_bf16   = std::get<2>(host_tensors);
        const Tensor<BF16>& b_imag_bf16   = std::get<3>(host_tensors);
        Tensor<BF16>& c_real_device_bf16  = std::get<4>(host_tensors);
        Tensor<BF16>& c_imag_device_bf16  = std::get<5>(host_tensors);
myamlak's avatar
myamlak committed
392
393
394
395
396
397
398
399
        Tensor<float>& a_real_fp32        = std::get<6>(host_tensors);
        Tensor<float>& a_imag_fp32        = std::get<7>(host_tensors);
        Tensor<float>& b_real_fp32        = std::get<8>(host_tensors);
        Tensor<float>& b_imag_fp32        = std::get<9>(host_tensors);
        Tensor<float>& c_real_host_fp32   = std::get<10>(host_tensors);
        Tensor<float>& c_imag_host_fp32   = std::get<11>(host_tensors);
        Tensor<float>& c_real_device_fp32 = std::get<12>(host_tensors);
        Tensor<float>& c_imag_device_fp32 = std::get<13>(host_tensors);
myamlak's avatar
myamlak committed
400
401
402
403
404
405

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        // use fp32 host kernel to verify bf16 device kernel
myamlak's avatar
myamlak committed
406
        using ReferenceCGemmInstance =
myamlak's avatar
myamlak committed
407
408
409
410
411
412
            ck::tensor_operation::host::ReferenceCGemm<float,
                                                       float,
                                                       float,
                                                       AElementwiseOperation,
                                                       BElementwiseOperation,
                                                       CElementwiseOperation>;
myamlak's avatar
myamlak committed
413
414
415
416
417
418
419
420
421
        ck::cgemm_util::RunHostCGEMM<ReferenceCGemmInstance>(a_real_fp32,
                                                             a_imag_fp32,
                                                             b_real_fp32,
                                                             b_imag_fp32,
                                                             c_real_host_fp32,
                                                             c_imag_host_fp32,
                                                             a_element_op,
                                                             b_element_op,
                                                             c_element_op);
myamlak's avatar
myamlak committed
422
423

        // Act
myamlak's avatar
myamlak committed
424
425
426
427
428
429
430
431
432
433
434
        ck::cgemm_util::RunDeviceCGEMM(cgemmPtr,
                                       params,
                                       a_real_bf16,
                                       a_imag_bf16,
                                       b_real_bf16,
                                       b_imag_bf16,
                                       c_real_device_bf16,
                                       c_imag_device_bf16,
                                       a_element_op,
                                       b_element_op,
                                       c_element_op);
myamlak's avatar
myamlak committed
435
436
437
438
439

        bf16_to_f32_(c_real_device_bf16, c_real_device_fp32);
        bf16_to_f32_(c_imag_device_bf16, c_imag_device_fp32);

        // Assert
440
441
442
443
        const bool res_real = ck::utils::check_err(c_real_device_fp32.mData,
                                                   c_real_host_fp32.mData,
                                                   "Error: incorrect results in real part!",
                                                   1e-2f,
myamlak's avatar
myamlak committed
444
                                                   1e-1f);
445
446
447
448
        const bool res_imag = ck::utils::check_err(c_imag_device_fp32.mData,
                                                   c_imag_host_fp32.mData,
                                                   "Error: incorrect results in imaginary part!",
                                                   1e-2f,
myamlak's avatar
myamlak committed
449
                                                   1e-1f);
450
451
        const bool res      = res_real && res_imag;

myamlak's avatar
myamlak committed
452
453
454
455
456
457
458
459
460
        std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;

        return res;
    };
};

} // namespace cgemm_util
} // namespace ck
#endif