cgemm_xdl_bf16.cpp 13 KB
Newer Older
myamlak's avatar
myamlak committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
myamlak's avatar
myamlak committed
14
#include "device_cgemm_4gemm_xdl_cshuffle.hpp"
myamlak's avatar
myamlak committed
15
16
17
18
#include "element_wise_operation.hpp"
#include "reference_cgemm.hpp"
#include "gemm_specialization.hpp"

myamlak's avatar
myamlak committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using BF16 = ck::bhalf_t;
using F32  = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = BF16;
using BDataType   = BF16;
using CDataType   = BF16;
using AccDataType = F32;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
    <ALayout,                    // typename ALayout
     BLayout,                    // typename BLayout
     CLayout,                    // typename CLayout
     ADataType,                  // typename ADataType
     BDataType,                  // typename BDataType
     CDataType,                  // typename CDataType
     AccDataType,                // typename GemmAccDataType
     CDataType,                  // typename CShuffleDataType
     PassThrough,                // typename AElementwiseOperation
     PassThrough,                // typename BElementwiseOperation
     PassThrough,                // typename CElementwiseOperation
     GemmDefault,                // GemmSpecialization GemmSpec
     1,                          // index_t NumGemmKPrefetchStage
     256,                        // index_t BlockSize
     256,                        // index_t MPerBlock
     128,                        // index_t NPerBlock
     32,                         // index_t KPerBlock
     8,                          // index_t AK1
     8,                          // index_t BK1
     32,                         // index_t MPerXDL
     32,                         // index_t NPerXDL
     4,                          // index_t MXdlPerWave
     2,                          // index_t NXdlPerWave
     S<4, 64, 1>,                // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
     S<1, 0, 2>,                 // typename ABlockTransferThreadClusterArrangeOrder
     S<1, 0, 2>,                 // typename ABlockTransferSrcAccessOrder
     2,                          // index_t ABlockTransferSrcVectorDim
     8,                          // index_t ABlockTransferSrcScalarPerVector
     8,                          // index_t ABlockTransferDstScalarPerVector_AK1
     1,                          // index_t ABlockLdsExtraM
     S<4, 64, 1>,                // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
     S<1, 0, 2>,                 // typename BBlockTransferThreadClusterArrangeOrder
     S<1, 0, 2>,                 // typename BBlockTransferSrcAccessOrder
     2,                          // index_t BBlockTransferSrcVectorDim
     8,                          // index_t BBlockTransferSrcScalarPerVector
     8,                          // index_t BBlockTransferDstScalarPerVector_BK1
     1,                          // index_t BBlockLdsExtraN
     1,                          // index_t CShuffleMXdlPerWavePerShuffle
     1,                          // index_t CShuffleNXdlPerWavePerShuffle
     S<1, 32, 1, 8>,             // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
     8>;                         // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on

using ReferenceCGemmInstance = ck::tensor_operation::host::
    ReferenceCGemm<float, float, float, PassThrough, PassThrough, PassThrough>;

int main(int argc, char* argv[])
{
91
92
93
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
myamlak's avatar
myamlak committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    // CGEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
108
        time_kernel     = std::stoi(argv[3]);
myamlak's avatar
myamlak committed
109
110
111
112
113
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
114
        time_kernel     = std::stoi(argv[3]);
myamlak's avatar
myamlak committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_real_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_imag_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
    std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
    std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
    std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
    std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
    std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
    }

myamlak's avatar
myamlak committed
177
178
    auto cgemm = DeviceCGemmInstance{};

myamlak's avatar
myamlak committed
179
180
181
182
183
184
185
186
    DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * a_m_k_real.mDesc.GetElementSpace());
    DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * a_m_k_imag.mDesc.GetElementSpace());
    DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * b_k_n_real.mDesc.GetElementSpace());
    DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * b_k_n_imag.mDesc.GetElementSpace());
    DeviceMem c_m_n_real_device_buf(sizeof(CDataType) *
                                    c_m_n_real_device_result.mDesc.GetElementSpace());
    DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) *
                                    c_m_n_imag_device_result.mDesc.GetElementSpace());
myamlak's avatar
myamlak committed
187
    DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));
myamlak's avatar
myamlak committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
    a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
    b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
    b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());

    auto a_element_op = PassThrough{};
    auto b_element_op = PassThrough{};
    auto c_element_op = PassThrough{};

    // do GEMM
    auto invoker = cgemm.MakeInvoker();
    auto argument =
        cgemm.MakeArgument(static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
                           static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
                           static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
207
                           static_cast<CDataType*>(workspace_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                           M,
                           N,
                           K,
                           StrideA,
                           StrideB,
                           StrideC,
                           a_element_op,
                           b_element_op,
                           c_element_op);

    if(!cgemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_cgemm with the specified compilation parameters does "
            "not support this CGEMM problem");
    }

225
    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
myamlak's avatar
myamlak committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

    std::size_t flop      = std::size_t(8) * M * N * K;
    std::size_t num_btype = std::size_t(2) * sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
                            sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << cgemm.GetTypeString() << std::endl;

    c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
    c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());

    if(do_verification)
    {
        Tensor<float> a_f32_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
        Tensor<float> a_f32_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
        Tensor<float> b_f32_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
        Tensor<float> b_f32_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
        Tensor<float> c_m_n_real_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<float> c_m_n_imag_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<float> c_m_n_real_device_f32_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<float> c_m_n_imag_device_f32_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

        bf16_to_f32_(a_m_k_real, a_f32_m_k_real);
        bf16_to_f32_(a_m_k_imag, a_f32_m_k_imag);
        bf16_to_f32_(b_k_n_real, b_f32_k_n_real);
        bf16_to_f32_(b_k_n_imag, b_f32_k_n_imag);
        bf16_to_f32_(c_m_n_real_device_result, c_m_n_real_device_f32_result);
        bf16_to_f32_(c_m_n_imag_device_result, c_m_n_imag_device_f32_result);

        auto ref_cgemm   = ReferenceCGemmInstance{};
        auto ref_invoker = ref_cgemm.MakeInvoker();

        auto ref_argument = ref_cgemm.MakeArgument(a_f32_m_k_real,
                                                   a_f32_m_k_imag,
                                                   b_f32_k_n_real,
                                                   b_f32_k_n_imag,
                                                   c_m_n_real_host_result,
                                                   c_m_n_imag_host_result,
                                                   a_element_op,
                                                   b_element_op,
                                                   c_element_op);

        ref_invoker.Run(ref_argument);

myamlak's avatar
Format  
myamlak committed
276
277
278
279
280
281
282
283
284
285
        ck::utils::check_err(c_m_n_real_device_f32_result.mData,
                             c_m_n_real_host_result.mData,
                             "Verification error: incorrect results in real part!",
                             1e-2f,
                             1e-3f);
        ck::utils::check_err(c_m_n_imag_device_f32_result.mData,
                             c_m_n_imag_host_result.mData,
                             "Verification error: incorrect results in imaginary part!",
                             1e-2f,
                             1e-3f);
myamlak's avatar
myamlak committed
286
287
288
289
    }

    return 0;
}