magic_division.hpp 7.43 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
// SPDX-License-Identifier: MIT
Illia Silin's avatar
Illia Silin committed
2
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
Chao Liu's avatar
Chao Liu committed
3

Chao Liu's avatar
Chao Liu committed
4
#pragma once
5

Chao Liu's avatar
Chao Liu committed
6
#include "ck/ck.hpp"
7
8
#include "integral_constant.hpp"
#include "number.hpp"
Umang Yadav's avatar
Umang Yadav committed
9
#include "type.hpp"
Umang Yadav's avatar
Umang Yadav committed
10
#include "tuple.hpp"
Umang Yadav's avatar
Umang Yadav committed
11
12

#define INT32_MAX 2147483647
13
14
15
16
17

namespace ck {

// magic number division
// Caution:
Umang Yadav's avatar
Umang Yadav committed
18
19
20
21
22
23
//   1. For uint32_t as dividend: magic number division implementation being used would produce
//   correct result if the dividend is uint32_t and its value is within 31-bit value range.
//   2. For int32_t as dividendd: magic number division for int32_t dividened has not been
//   implemented, the int32_t dividend would be bit-wise interpreted as uint32_t and magic number
//   division implementation for uint32_t is then used. Therefore, dividend value need to be
//   non-negative.
24
25
26
// TODO:
//   1. Implement magic number divison for int32_t
//   2. Implement magic number divison for unit32_t with 32-bit value range
Umang Yadav's avatar
Umang Yadav committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
struct MagicDivision
{
    // uint32_t
    __host__ __device__ static constexpr auto CalculateMagicNumbers(uint32_t divisor)
    {
        // WARNING: magic division is only applicable for division inside this range.
        // You should use the return value of CalculateMagicNumbers, if division is not inside this
        // range. The "else" logic below is to quiet down run-time error.
        if(divisor >= 1 && divisor <= INT32_MAX)
        {
            uint32_t shift = 0;
            for(shift = 0; shift < 32; ++shift)
            {
                if((1U << shift) >= divisor)
                {
                    break;
                }
            }

            uint64_t one        = 1;
            uint64_t multiplier = ((one << 32) * ((one << shift) - divisor)) / divisor + 1;
            // assert(multiplier <= 0xffffffffUL);

            return make_tuple(uint32_t(multiplier), shift);
51
        }
Umang Yadav's avatar
Umang Yadav committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        else
        {
            return make_tuple(uint32_t(0), uint32_t(0));
        }
    }

    __host__ __device__ static constexpr uint32_t CalculateMagicMultiplier(uint32_t divisor)
    {
        auto tmp = CalculateMagicNumbers(divisor);

        return tmp[Number<0>{}];
    }

    __host__ __device__ static constexpr uint32_t CalculateMagicShift(uint32_t divisor)
    {
        auto tmp = CalculateMagicNumbers(divisor);

        return tmp[Number<1>{}];
    }

    // integral_constant<uint32_t, .>
    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
Umang Yadav's avatar
Umang Yadav committed
75
        CalculateMagicNumbers(integral_constant<uint32_t, Divisor>)
Umang Yadav's avatar
Umang Yadav committed
76
77
78
79
80
81
82
83
84
85
86
87
    {
        constexpr auto tmp = CalculateMagicNumbers(uint32_t{Divisor});

        constexpr uint32_t multiplier = tmp[Number<0>{}];
        constexpr uint32_t shift      = tmp[Number<1>{}];

        return make_tuple(integral_constant<uint32_t, multiplier>{},
                          integral_constant<uint32_t, shift>{});
    }

    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
Umang Yadav's avatar
Umang Yadav committed
88
        CalculateMagicMultiplier(integral_constant<uint32_t, Divisor>)
Umang Yadav's avatar
Umang Yadav committed
89
90
91
92
93
94
95
96
    {
        constexpr uint32_t multiplier = CalculateMagicMultiplier(uint32_t{Divisor});

        return integral_constant<uint32_t, multiplier>{};
    }

    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
Umang Yadav's avatar
Umang Yadav committed
97
        CalculateMagicShift(integral_constant<uint32_t, Divisor>)
Umang Yadav's avatar
Umang Yadav committed
98
99
100
101
102
103
104
105
106
    {
        constexpr uint32_t shift = CalculateMagicShift(uint32_t{Divisor});

        return integral_constant<uint32_t, shift>{};
    }

    // integral_constant<int32_t, .>
    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
Umang Yadav's avatar
Umang Yadav committed
107
        CalculateMagicNumbers(integral_constant<int32_t, Divisor>)
Umang Yadav's avatar
Umang Yadav committed
108
109
110
111
112
113
    {
        return CalculateMagicNumbers(integral_constant<uint32_t, Divisor>{});
    }

    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
Umang Yadav's avatar
Umang Yadav committed
114
        CalculateMagicMultiplier(integral_constant<int32_t, Divisor>)
Umang Yadav's avatar
Umang Yadav committed
115
116
117
118
119
120
    {
        return CalculateMagicMultiplier(integral_constant<uint32_t, Divisor>{});
    }

    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
Umang Yadav's avatar
Umang Yadav committed
121
        CalculateMagicShift(integral_constant<int32_t, Divisor>)
Umang Yadav's avatar
Umang Yadav committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    {
        return CalculateMagicShift(integral_constant<uint32_t, Divisor>{});
    }

    // magic division for uint32_t
    __device__ static constexpr uint32_t
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
        uint32_t tmp = __umulhi(dividend, multiplier);
        return (tmp + dividend) >> shift;
    }

    __host__ static constexpr uint32_t
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
        uint32_t tmp = static_cast<uint64_t>(dividend) * multiplier >> 32;
        return (tmp + dividend) >> shift;
    }

    // magic division for int32_t
    // HACK: use dividend_i32 as if it's uint32_t, dividend_i32 need to be
    // non-negative for result to be correct
    // TODO: figure out how to do magic number divison for int32_t as dividended
    __device__ static constexpr int32_t
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
        uint32_t tmp          = __umulhi(dividend_u32, multiplier);
        return (tmp + dividend_u32) >> shift;
    }

    __host__ static constexpr int32_t
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
        uint32_t tmp          = static_cast<uint64_t>(dividend_u32) * multiplier >> 32;
        return (tmp + dividend_u32) >> shift;
    }
160
161
};

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
struct MDiv
{
    // 1 dword -> 3 dword storage
    uint32_t divisor;
    uint32_t multiplier;
    uint32_t shift; // TODO: 8 bit is enough

    // prefer construct on host
    __host__ __device__ MDiv(uint32_t divisor_) : divisor(divisor_)
    {
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ MDiv() : divisor(0), multiplier(0), shift(0) {}

    __host__ __device__ void update(uint32_t divisor_)
    {
        divisor  = divisor_;
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ uint32_t div(uint32_t dividend_) const
    {
        return MagicDivision::DoMagicDivision(dividend_, multiplier, shift);
    }

    __host__ __device__ void
    divmod(uint32_t dividend_, uint32_t& quotient_, uint32_t& remainder_) const
    {
        quotient_  = div(dividend_);
        remainder_ = dividend_ - (quotient_ * divisor);
    }

    __host__ __device__ uint32_t get() const { return divisor; }
};

struct MDiv2
{
    // 1 dword -> 2 dword storage, divisor need compute from runtime
    uint32_t multiplier;
    uint32_t shift; // TODO: 8 bit is enough

    // prefer construct on host
    __host__ __device__ MDiv2(uint32_t divisor_)
    {
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ MDiv2() : multiplier(0), shift(0) {}

    __host__ __device__ uint32_t div(uint32_t dividend_) const
    {
        return MagicDivision::DoMagicDivision(dividend_, multiplier, shift);
    }

    __host__ __device__ void
    divmod(uint32_t dividend_, uint32_t divisor_, uint32_t& quotient_, uint32_t& remainder_) const
    {
        quotient_  = div(dividend_);
        remainder_ = dividend_ - (quotient_ * divisor_);
    }
};

234
} // namespace ck