"composable_kernel/include/utility/Sequence.hpp" did not exist on "fd8de384170d6100a837b19e37139665c89e2054"
layernorm_blockwise.cpp 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"

using XDataType     = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType  = ck::half_t;
using YDataType     = ck::half_t;
using AccDataType   = float;

constexpr int Rank         = 2;
constexpr int NumReduceDim = 1;

using DeviceInstance = ck::tensor_operation::device::DeviceLayernorm<XDataType,
                                                                     GammaDataType,
                                                                     BetaDataType,
                                                                     AccDataType,
                                                                     YDataType,
                                                                     Rank,
                                                                     NumReduceDim,
                                                                     256, // BlockSize
                                                                     8,   // ClusterM
                                                                     32,  // ClusterK
                                                                     1,   // SliceM
                                                                     8,   // SliceK
                                                                     1,   // SrcVecDim (0=M, 1=K)
43
44
45
46
47
                                                                     8,   // SrcScalarPerVector
                                                                     1,   // GammaVecDim (0=M, 1=K)
                                                                     8,   // GammaScalarPerVector
                                                                     1,   // BetaVecDim (0=M, 1=K)
                                                                     8,   // BetaScalarPerVector
rocking's avatar
rocking committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
                                                                     1>;  // OutScalarPerVector

template <typename XDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename YDataType,
          typename AccDataType>
void host_layernorm2d(const Tensor<XDataType>& x_m_n,
                      const Tensor<GammaDataType>& gamma_n,
                      const Tensor<BetaDataType>& beta_n,
                      Tensor<YDataType>& y_m_n,
                      int M,
                      int N,
                      AccDataType epislon = 1e-4)
{
    Tensor<AccDataType> mean({M});
    Tensor<AccDataType> var({M});

    for(int m = 0; m < M; ++m)
    {
        mean(m) = 0;
        var(m)  = 0;

        for(int n = 0; n < N; ++n)
        {
            auto x_val = ck::type_convert<AccDataType>(x_m_n(m, n));
            mean(m) += x_val;
            var(m) += x_val * x_val;
        }

        mean(m) = mean(m) / N;
        var(m)  = (var(m) / N) - (mean(m) * mean(m));
    }

    for(int m = 0; m < M; ++m)
    {
        for(int n = 0; n < N; ++n)
        {
            auto x_val  = ck::type_convert<AccDataType>(x_m_n(m, n));
            auto y_val  = (x_val - mean(m)) / sqrt(var(m) + epislon);
            y_val       = (y_val * gamma_n(n)) + beta_n(n);
            y_m_n(m, n) = ck::type_convert<YDataType>(y_val);
        }
    }
}
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

int main()
{
    bool time_kernel = false;

    ck::index_t M      = 1024;
    ck::index_t N      = 1024;
    ck::index_t Stride = 1024;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({len}),
                                    std::vector<std::size_t>({stride}));
    };

    auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                    std::vector<std::size_t>({stride, 1}));
    };

    Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
    Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
    Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
    Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));

    x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
    gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
    beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpace());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpace());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpace());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpace());

    x_dev.ToDevice(x.mData.data());
rocking's avatar
rocking committed
127
128
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());
129
130
131
132
133

    auto device_instance = DeviceInstance{};
    auto argument_ptr    = device_instance.MakeArgumentPointer({M, N},
                                                            {Stride, 1},
                                                            {0, 1},
134
                                                            {0, 1},
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                                                            {1},
                                                            1e-4,
                                                            x_dev.GetDeviceBuffer(),
                                                            gamma_dev.GetDeviceBuffer(),
                                                            beta_dev.GetDeviceBuffer(),
                                                            y_dev.GetDeviceBuffer());

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout << "The runtime parameters are not supported" << std::endl;
        return 1;
    };

    auto invoker_ptr = device_instance.MakeInvokerPointer();
    invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    bool pass = true;
rocking's avatar
rocking committed
152
153
154
155
156
157
158
159
160
    {
        Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
        host_layernorm2d<XDataType, GammaDataType, BetaDataType, YDataType, AccDataType>(
            x, gamma, beta, host_y, M, N);

        y_dev.FromDevice(y.mData.data());
        pass &=
            ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
    }
161
162
    return (pass ? 0 : 1);
}