f8_utils.hpp 7.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include "ck/utility/data_type.hpp"

namespace ck {

// fp8 rounding modes
// use standard for rounding to nearest, the faster one
// use stochastic for stochastic rounding, helps to avoid error accumulation
enum class f8_rounding_mode
{
    standard,
    stochastic
};

} // namespace ck

namespace ck::utils {

namespace {

template <typename T, bool negative_zero_nan, bool clip, bool stoch>
__host__ __device__ f8_t run_cast_to_f8(T x, uint32_t rng)
{
    // check data type
    constexpr bool is_half  = std::is_same<T, half_t>::value;
    constexpr bool is_float = std::is_same<T, float>::value;

    // fp8 exponent/mantissa layout
    constexpr int f8_exp  = 4;
    constexpr int f8_mant = 3;

    // resulting type exponent/mantissa layout
    constexpr int type_exp  = is_half ? 5 : 8;
    constexpr int type_mant = is_half ? 10 : 23;

    int exponent;
    uint32_t head, mantissa, sign;
    // nan code is same for float and half
    constexpr uint8_t nan_code  = 0x80;
    constexpr uint32_t nan_mask = is_half ? 0x7C00 : 0x7F800000;

    // convert to bitwise
    typedef typename std::conditional<std::is_same<T, half_t>::value, uint16_t, uint32_t>::type
        T_bitwise;
    T_bitwise x_bitwise = *(reinterpret_cast<T_bitwise*>(&x));

    // unpack the input, depends on datatype
    if constexpr(is_float)
    {
        head     = x_bitwise & 0xFF800000;
        mantissa = x_bitwise & 0x7FFFFF;
        exponent = (head >> type_mant) & 0xFF;
        sign     = head >> (type_exp + type_mant);
    }
    else if constexpr(is_half)
    {
        head     = x_bitwise & 0xFC00;
        mantissa = x_bitwise & 0x3FF;
        exponent = (head >> type_mant) & 0x1F;
        sign     = head >> (type_exp + type_mant);
    }

    uint32_t signed_inf   = (sign << (type_exp + type_mant)) + (((1 << type_exp) - 1) << type_mant);
    uint32_t drop_mask    = (1 << (type_mant - f8_mant)) - 1;
    constexpr int max_exp = (1 << f8_exp) - (negative_zero_nan ? 1 : 2);
    constexpr int exp_low_cutoff =
        (1 << (type_exp - 1)) - (1 << (f8_exp - 1)) + 1 - (negative_zero_nan ? 1 : 0);

    if constexpr(negative_zero_nan)
    {
        if((x_bitwise & nan_mask) == nan_mask)
            return nan_code;
    }
    else
    {
        if((x_bitwise & nan_mask) == nan_mask)
            return signed_inf + (mantissa != 0 ? 1 : 0);
    }

    // check if x is 0.0
    if(x_bitwise == 0)
        return 0;

    exponent -= exp_low_cutoff - 1;
    if(exponent <= 0)
        drop_mask = (1 << (type_mant - f8_mant + 1 - exponent)) - 1;
    mantissa += 1 << type_mant;
    // apply random number if needed
    mantissa += (stoch ? rng : mantissa) & drop_mask;
    if(mantissa >= (2 << type_mant))
    {
        mantissa >>= 1;
        exponent++;
    }
    mantissa >>= (type_mant - f8_mant);

    // check negative exponent
    if(exponent <= 0)
    {
        if(x_bitwise == 0)
            return 0;
        else
        {
            // subnormal range; represented by a subnormal float8 (exponent 0)
            // and involves loss of accuracy
            mantissa >>= 1 - exponent;
            exponent = 0;
        }
    }
    // above range: quantize to maximum possible float of the same sign
    else if(exponent > max_exp)
    {
        if(clip)
        {
            mantissa = (1 << f8_mant) - 1;
            exponent = max_exp;
        }
        else
        {
            return signed_inf;
        }
    }

    // check if x is 0.0 or -0.0
    if(exponent == 0 && mantissa == 0)
        return negative_zero_nan ? 0 : (sign << (f8_exp + f8_mant));
    mantissa &= (1 << f8_mant) - 1;
    return (sign << (f8_exp + f8_mant)) | (exponent << f8_mant) | mantissa;
}

template <typename T, bool negative_zero_nan>
__host__ __device__ T run_cast_from_f8(f8_t x)
{
    // check data type
    constexpr bool is_half  = std::is_same<T, half_t>::value;
    constexpr bool is_float = std::is_same<T, float>::value;

    // fp8 exponent/mantissa layout
    constexpr int f8_exp  = 4;
    constexpr int f8_mant = 3;

    // resulting type exponent/mantissa layout
    constexpr int type_exp  = is_half ? 5 : 8;
    constexpr int type_mant = is_half ? 10 : 23;

    // prepare the codes
    constexpr uint8_t nan_code = 0x80;
    T fInf, fNegInf, fNaN, fNeg0;
    if constexpr(is_half)
    {
        constexpr uint16_t ihInf    = 0x7C00;
        constexpr uint16_t ihNegInf = 0xFC00;
        constexpr uint16_t ihNaN    = 0x7C01;
        constexpr uint16_t ihNeg0   = 0x8000;
        fInf                        = *(reinterpret_cast<const half_t*>(&ihInf));
        fNegInf                     = *(reinterpret_cast<const half_t*>(&ihNegInf));
        fNaN                        = *(reinterpret_cast<const half_t*>(&ihNaN));
        fNeg0                       = *(reinterpret_cast<const half_t*>(&ihNeg0));
    }
    else if constexpr(is_float)
    {
        constexpr uint32_t ifInf    = 0x7F800000;
        constexpr uint32_t ifNegInf = 0xFF800000;
        constexpr uint32_t ifNaN    = 0x7F800001;
        constexpr uint32_t ifNeg0   = 0x80000000;
        fInf                        = *(reinterpret_cast<const float*>(&ifInf));
        fNegInf                     = *(reinterpret_cast<const float*>(&ifNegInf));
        fNaN                        = *(reinterpret_cast<const float*>(&ifNaN));
        fNeg0                       = *(reinterpret_cast<const float*>(&ifNeg0));
    }

    // unpack the input
    uint32_t sign     = x >> (f8_exp + f8_mant);
    uint32_t mantissa = x & ((1 << f8_mant) - 1);
    int exponent      = (x & 0x7F) >> f8_mant;

    constexpr int exp_low_cutoff =
        (1 << (type_exp - 1)) - (1 << (f8_exp - 1)) + 1 - (negative_zero_nan ? 1 : 0);
    typename std::conditional<std::is_same<T, half_t>::value, uint16_t, uint32_t>::type retval;

    if constexpr(negative_zero_nan)
    {
        if(x == nan_code)
            return fNaN;
    }
    else
    {
        if(x == nan_code)
            return fNeg0;
        if(exponent == ((1 << f8_exp) - 1))
            return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
    }

    // subnormal input
    if(exponent == 0)
    {
        // guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
        int sh = 1 + __builtin_clz(mantissa) - ((1 + type_exp + type_mant) - f8_mant);
        mantissa <<= sh;
        mantissa &= ((1 << f8_mant) - 1);
        exponent += 1 - sh;
    }
    exponent += exp_low_cutoff - 1;
    mantissa <<= type_mant - f8_mant;

    // subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
    if(exponent <= 0)
    {
        mantissa |= 1 << type_mant;
        mantissa >>= 1 - exponent;
        exponent = 0;
    }

    retval = (sign << (type_exp + type_mant)) | (exponent << type_mant) | mantissa;
    return *(reinterpret_cast<const T*>(&retval));
}

} // namespace

template <typename T, bool negative_zero_nan, bool clip, bool stoch>
__host__ __device__ f8_t cast_to_f8(T x, uint32_t rng)
{
    // check datatype
    constexpr bool is_half  = std::is_same<T, half_t>::value;
    constexpr bool is_float = std::is_same<T, float>::value;
    static_assert(is_half || is_float, "Only half and float can be casted to f8.");

    return run_cast_to_f8<T, negative_zero_nan, clip, stoch>(x, rng);
}

template <typename T, bool negative_zero_nan>
__host__ __device__ T cast_from_f8(f8_t x)
{
    // check datatype
    constexpr bool is_half  = std::is_same<T, half_t>::value;
    constexpr bool is_float = std::is_same<T, float>::value;
    static_assert(is_half || is_float, "only half and float are supported.");

    // check if x is 0.0
    if(x == 0)
        return static_cast<T>(0);

    return run_cast_from_f8<T, negative_zero_nan>(x);
}

} // namespace ck::utils