batched_gemm_example.inc 6.77 KB
Newer Older
Jing Zhang's avatar
Jing Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#pragma once

struct ProblemSize final
{
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t stride_A = K;
    ck::index_t stride_B = K;
    ck::index_t stride_C = N;

    ck::index_t batch_stride_A = M * K;
    ck::index_t batch_stride_B = K * N;
    ck::index_t batch_stride_C = M * N;

    ck::index_t batch_count = 16;
};

struct ExecutionConfig final
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
};

bool run_batched_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
    using namespace ck::literals;

    auto& [M, N, K, stride_A, stride_B, stride_C, batch_stride_A, batch_stride_B, batch_stride_C, batch_count] = problem_size;

    // GEMM shape
    auto f_host_tensor_descriptor = [](std::size_t batch_count_,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       std::size_t batch_stride,
                                       auto layout) {
        if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
                                        std::vector<std::size_t>({batch_stride, stride, 1}));
        }
        else
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
                                        std::vector<std::size_t>({batch_stride, 1, stride}));
        }
    };

    Tensor<ADataType> a_g_m_k(
        f_host_tensor_descriptor(batch_count, M, K, stride_A, batch_stride_A, ALayout{}));
    Tensor<BDataType> b_g_k_n(
        f_host_tensor_descriptor(batch_count, K, N, stride_B, batch_stride_B, BLayout{}));

    Tensor<EDataType> e_g_m_n_device_result(
        f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
    std::cout << "e_g_m_n: " << e_g_m_n_device_result.mDesc << std::endl;

    switch(config.init_method)
    {
    case 0: break;
    case 1:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_device_buf(sizeof(EDataType) * e_g_m_n_device_result.mDesc.GetElementSpaceSize());

    a_device_buf.ToDevice(a_g_m_k.mData.data());
    b_device_buf.ToDevice(b_g_k_n.mData.data());

    auto a_element_op   = AElementOp{};
    auto b_element_op   = BElementOp{};
    auto cde_element_op = CDEElementOp{};

    auto gemm    = DeviceGemmInstance{};
    auto invoker = gemm.MakeInvoker();

    // do GEMM
    auto argument = gemm.MakeArgument(a_device_buf.GetDeviceBuffer(),
                                      b_device_buf.GetDeviceBuffer(),
                                      {},
                                      c_device_buf.GetDeviceBuffer(),
                                      M,
                                      N,
                                      K,
                                      batch_count,
                                      stride_A,
                                      stride_B,
                                      {},
                                      stride_C,
                                      batch_stride_A,
                                      batch_stride_B,
                                      {},
                                      batch_stride_C,
                                      a_element_op,
                                      b_element_op,
                                      cde_element_op);

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});

    std::size_t flop      = std::size_t(2) * batch_count * M * N * K;
    std::size_t num_btype = sizeof(ADataType) * batch_count * M * K +
                            sizeof(BDataType) * batch_count * K * N +
                            sizeof(EDataType) * batch_count * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    bool pass = true;

    if(config.do_verification)
    {
        c_device_buf.FromDevice(e_g_m_n_device_result.mData.data());

        auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
        auto ref_invoker      = ref_batched_gemm.MakeInvoker();

        Tensor<EDataType> e_g_m_n_host_result(
            f_host_tensor_descriptor(batch_count, M, N, stride_C, batch_stride_C, ELayout{}));

        auto ref_argument = ref_batched_gemm.MakeArgument(
            a_g_m_k, b_g_k_n, e_g_m_n_host_result, a_element_op, b_element_op, cde_element_op);

        ref_invoker.Run(ref_argument);

        pass = ck::utils::check_err(
            e_g_m_n_host_result.mData, e_g_m_n_device_result.mData, "Error: Incorrect results c");
    }

    return pass ? 0 : 1;
}

bool run_batched_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    problem_size.M = 256 * (rand() % 16 + 1);
    problem_size.N = 128 * (rand() % 16 + 1);
    problem_size.K = 64 * (rand() % 16 + 1);

    problem_size.stride_A = problem_size.K;
    problem_size.stride_B = problem_size.K;
    problem_size.stride_C = problem_size.N;

    problem_size.batch_stride_A = problem_size.M * problem_size.K;
    problem_size.batch_stride_B = problem_size.K * problem_size.N;
    problem_size.batch_stride_C = problem_size.M * problem_size.N;

    problem_size.batch_count = 16;

    if(argc == 4)
    {
        config.do_verification = std::stoi(argv[1]);
        config.init_method     = std::stoi(argv[2]);
        config.time_kernel     = std::stoi(argv[3]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=n0, 1=yes)\n");
        exit(0);
    }

    return run_batched_gemm(problem_size, config);
}