profile_grouped_conv_fwd_impl.hpp 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>
#include <iostream>
#include <typeinfo>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
12
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
13
14
15
16
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"

17
18
19
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/array.hpp"
20
#include "ck/library/utility/check_err.hpp"
21
22
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

namespace ck {
namespace profiler {

template <ck::index_t NDimSpatial,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType>
bool profile_grouped_conv_fwd_impl(int do_verification,
                                   int init_method,
                                   bool do_log,
                                   bool time_kernel,
                                   const ck::utils::conv::ConvParam& conv_param)
{
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    const auto in_g_n_c_wis_desc =
        ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);

    const auto wei_g_k_c_xs_desc =
        ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);

    const auto out_g_n_k_wos_desc =
        ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);

    std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
    std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
    std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
    std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
    std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
    std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
    std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
    std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
    std::array<ck::index_t, NDimSpatial> input_left_pads{};
    std::array<ck::index_t, NDimSpatial> input_right_pads{};

71
    auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

    copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
    copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
    copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
    copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
    copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
    copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
    copy(conv_param.conv_filter_strides_, conv_filter_strides);
    copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
    copy(conv_param.input_left_pads_, input_left_pads);
    copy(conv_param.input_right_pads_, input_right_pads);

    Tensor<InDataType> input(in_g_n_c_wis_desc);
    Tensor<WeiDataType> weight(wei_g_k_c_xs_desc);
    Tensor<OutDataType> host_output(out_g_n_k_wos_desc);
    Tensor<OutDataType> device_output(out_g_n_k_wos_desc);

89
90
91
    std::cout << "input: " << input.GetDesc() << std::endl;
    std::cout << "weight: " << weight.GetDesc() << std::endl;
    std::cout << "output: " << host_output.GetDesc() << std::endl;
92
93
94
95
96
97
98
99
100
101
102
103
104

    switch(init_method)
    {
    case 0: break;
    case 1:
        input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        weight.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        weight.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
    }

105
106
107
    DeviceMem in_device_buf(input.GetMemorySize());
    DeviceMem wei_device_buf(weight.GetMemorySize());
    DeviceMem out_device_buf(device_output.GetMemorySize());
108

109
110
    in_device_buf.ToDevice(input.data());
    wei_device_buf.ToDevice(weight.data());
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

    // run reference op
    if(do_verification)
    {
        auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
                                                                     InDataType,
                                                                     WeiDataType,
                                                                     OutDataType,
                                                                     InElementOp,
                                                                     WeiElementOp,
                                                                     OutElementOp>{};

        auto ref_invoker  = ref_conv.MakeInvoker();
        auto ref_argument = ref_conv.MakeArgument(input,
                                                  weight,
                                                  host_output,
                                                  conv_param.conv_filter_strides_,
                                                  conv_param.conv_filter_dilations_,
                                                  conv_param.input_left_pads_,
                                                  conv_param.input_right_pads_,
                                                  in_element_op,
                                                  wei_element_op,
                                                  out_element_op);

        // init host output to zero
        host_output.SetZero();

        ref_invoker.Run(ref_argument);
    }

    using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
                                                                                 InLayout,
                                                                                 WeiLayout,
                                                                                 ck::Tuple<>,
                                                                                 OutLayout,
                                                                                 InDataType,
                                                                                 WeiDataType,
                                                                                 ck::Tuple<>,
                                                                                 OutDataType,
                                                                                 InElementOp,
                                                                                 WeiElementOp,
                                                                                 OutElementOp>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    std::string best_op_name;
    float best_avg_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device op instances
    bool pass = true;

168
169
    using ck::utils::empty_array;

170
171
    for(auto& op_ptr : op_ptrs)
    {
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        auto argument_ptr = op_ptr->MakeArgumentPointer(in_device_buf.GetDeviceBuffer(),
                                                        wei_device_buf.GetDeviceBuffer(),
                                                        empty_array(),
                                                        out_device_buf.GetDeviceBuffer(),
                                                        a_g_n_c_wis_lengths,
                                                        a_g_n_c_wis_strides,
                                                        b_g_k_c_xs_lengths,
                                                        b_g_k_c_xs_strides,
                                                        empty_array(),
                                                        empty_array(),
                                                        e_g_n_k_wos_lengths,
                                                        e_g_n_k_wos_strides,
                                                        conv_filter_strides,
                                                        conv_filter_dilations,
                                                        input_left_pads,
                                                        input_right_pads,
                                                        in_element_op,
                                                        wei_element_op,
                                                        out_element_op);
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            // re-init output to zero before profiling next kernel
            out_device_buf.SetZero();

            std::string op_name = op_ptr->GetTypeString();

            auto invoker_ptr = op_ptr->MakeInvokerPointer();

            float avg_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

            std::size_t flop      = conv_param.GetFlops();
            std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();

            float tflops = static_cast<float>(flop) / 1.E9 / avg_time;

            float gb_per_sec = num_btype / 1.E6 / avg_time;

            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_avg_time   = avg_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
224
                out_device_buf.FromDevice(device_output.data());
225

226
                pass = pass & ck::utils::check_err(device_output, host_output);
227
228
229

                if(do_log)
                {
230
231
232
                    LogRangeAsType<float>(std::cout << "input : ", input, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "weight: ", weight, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "host_output  : ", host_output, ",")
233
                        << std::endl;
234
                    LogRangeAsType<float>(std::cout << "device_output: ", device_output, ",")
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
        }
    }

    std::cout << "Best configuration parameters:"
              << "\nname: " << best_op_name << "\navg_time: " << best_avg_time
              << "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck