profile_gemm_splitk_impl.hpp 9.82 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>
#include <iostream>
#include <typeinfo>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
12
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
Chao Liu's avatar
Chao Liu committed
13
14
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

15
#include "ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp"
Chao Liu's avatar
Chao Liu committed
16

17
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
18
#include "ck/library/utility/check_err.hpp"
19
20
21
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
22
#include "ck/library/utility/literals.hpp"
Chao Liu's avatar
Chao Liu committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename AccDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_splitk_impl(int do_verification,
                              int init_method,
                              bool do_log,
                              bool time_kernel,
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC,
                              int KBatch)
{
    bool pass = true;

48
49
    using namespace ck::literals;

Chao Liu's avatar
Chao Liu committed
50
51
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
52
            if constexpr(is_same_v<decltype(layout), tensor_layout::gemm::RowMajor>)
Chao Liu's avatar
Chao Liu committed
53
            {
54
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
Chao Liu's avatar
Chao Liu committed
55
56
57
            }
            else
            {
58
                return HostTensorDescriptor({row, col}, {1_uz, stride});
Chao Liu's avatar
Chao Liu committed
59
60
61
62
63
64
65
66
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

67
68
69
    std::cout << "a_m_k: " << a_m_k.GetDesc() << std::endl;
    std::cout << "b_k_n: " << b_k_n.GetDesc() << std::endl;
    std::cout << "c_m_n: " << c_m_n_device_result.GetDesc() << std::endl;
Chao Liu's avatar
Chao Liu committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
    }

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

91
92
93
    DeviceMem a_device_buf(a_m_k.GetMemorySize());
    DeviceMem b_device_buf(b_k_n.GetMemorySize());
    DeviceMem c_device_buf(c_m_n_device_result.GetMemorySize());
Chao Liu's avatar
Chao Liu committed
94

95
96
97
    a_device_buf.ToDevice(a_m_k.data());
    b_device_buf.ToDevice(b_k_n.data());
    c_device_buf.ToDevice(c_m_n_device_result.data());
Chao Liu's avatar
Chao Liu committed
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    using DeviceOp = ck::tensor_operation::device::DeviceGemmSplitK<ALayout,
                                                                    BLayout,
                                                                    CLayout,
                                                                    ADataType,
                                                                    BDataType,
                                                                    CDataType,
                                                                    AElementOp,
                                                                    BElementOp,
                                                                    CElementOp>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
Chao Liu's avatar
Chao Liu committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    // Run reference GEMM
    if(do_verification)
    {
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                AccDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
    }

    std::string best_op_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& op_ptr : op_ptrs)
    {
143
144
145
146
147
148
149
150
151
152
153
154
155
        auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                        b_device_buf.GetDeviceBuffer(),
                                                        c_device_buf.GetDeviceBuffer(),
                                                        M,
                                                        N,
                                                        K,
                                                        StrideA,
                                                        StrideB,
                                                        StrideC,
                                                        a_element_op,
                                                        b_element_op,
                                                        c_element_op,
                                                        KBatch);
Chao Liu's avatar
Chao Liu committed
156
157
158
159
160
161
162
163
164
165
166
167
168

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            // re-init C to zero before profiling next kernel
            c_device_buf.SetZero();

            std::string op_name = op_ptr->GetTypeString();

            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

169
            std::size_t flop = 2_uz * M * N * K;
Chao Liu's avatar
Chao Liu committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
191
                c_device_buf.FromDevice(c_m_n_device_result.data());
Chao Liu's avatar
Chao Liu committed
192

193
                pass = pass & ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
Chao Liu's avatar
Chao Liu committed
194
195
196

                if(do_log)
                {
197
198
199
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result, ",")
Chao Liu's avatar
Chao Liu committed
200
                        << std::endl;
201
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result, ",")
Chao Liu's avatar
Chao Liu committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
        }
    }

    if constexpr(is_same<CDataType, float>::value)
    {
        std::cout << "Best Perf for datatype = f32";
    }
    else if constexpr(is_same<CDataType, half_t>::value)
    {
        std::cout << "Best Perf for datatype = f16";
    }
    else if constexpr(is_same<CDataType, bhalf_t>::value)
    {
        std::cout << "Best Perf for datatype = bf16";
    }
    else if constexpr(is_same<CDataType, int8_t>::value)
    {
        std::cout << "Best Perf for datatype = int8";
    }

    if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
    {
        std::cout << " ALayout =  RowMajor";
    }
    else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
    {
        std::cout << " ALayout =  ColumnMajor";
    }

    if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
    {
        std::cout << " BLayout =  RowMajor";
    }
    else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
    {
        std::cout << " BLayout =  ColumnMajor";
    }

    std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
              << " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << best_ave_time
              << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
              << best_op_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck