contraction_scale_xdl_fp32.cpp 24.5 KB
Newer Older
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
5
#include <cstdlib>
#include <initializer_list>
6
7
8
9
10
#include <iostream>
#include <numeric>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
11
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
12
13
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

14
#include "ck/library/utility/array.hpp"
15
#include "ck/library/utility/check_err.hpp"
16
17
18
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
19
#include "ck/library/utility/numeric.hpp"
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F32 = float;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType        = F32;
using BDataType        = F32;
using AccDataType      = F32;
using CShuffleDataType = F32;
using DsDataType       = ck::Tuple<>;
using EDataType        = F32;

static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;

using AElementOp   = ck::tensor_operation::element_wise::PassThrough;
using BElementOp   = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;

static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;

// clang-format off
Po Yen Chen's avatar
Po Yen Chen committed
46
using DeviceOpInstanceKKN = ck::tensor_operation::device::
47
48
49
50
51
52
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   4,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
53
using DeviceOpInstanceKNN = ck::tensor_operation::device::
54
55
56
57
58
59
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   4,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
60
using DeviceOpInstanceMKN = ck::tensor_operation::device::
61
62
63
64
65
66
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   1,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
67
using DeviceOpInstanceMNN = ck::tensor_operation::device::
68
69
70
71
72
73
74
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   1,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;
// clang-format on

Po Yen Chen's avatar
Po Yen Chen committed
75
using DeviceOpInstance = DeviceOpInstanceKKN;
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
          ck::index_t NumDimN,
          ck::index_t NumDimK,
          typename ADataType,
          typename BDataType,
          typename EDataType,
          typename AccDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CDEElementwiseOperation,
          ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
    // Argument
    struct Argument : public ck::tensor_operation::device::BaseArgument
    {
        Argument(const Tensor<ADataType>& a_ms_ks,
                 const Tensor<BDataType>& b_ns_ks,
                 Tensor<EDataType>& e_ms_ns,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CDEElementwiseOperation cde_element_op)
            : a_ms_ks_{a_ms_ks},
              b_ns_ks_{b_ns_ks},
              e_ms_ns_{e_ms_ns},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              cde_element_op_{cde_element_op}
        {
        }

        const Tensor<ADataType>& a_ms_ks_;
        const Tensor<BDataType>& b_ns_ks_;
        Tensor<EDataType>& e_ms_ns_;

        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CDEElementwiseOperation cde_element_op_;
    };

    // Invoker
    struct Invoker : public ck::tensor_operation::device::BaseInvoker
    {
        using Argument = ReferenceContraction_M2_N2_K2::Argument;

        float Run(const Argument& arg)
        {
            auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
126
127
                const int K0 = arg.a_ms_ks_.GetLengths()[2];
                const int K1 = arg.a_ms_ks_.GetLengths()[3];
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

                AccDataType v_acc = 0;

                for(int k0 = 0; k0 < K0; ++k0)
                {
                    for(int k1 = 0; k1 < K1; ++k1)
                    {
                        AccDataType v_a;
                        AccDataType v_b;

                        arg.a_element_op_(
                            v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
                        arg.b_element_op_(
                            v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));

                        v_acc += v_a * v_b;
                    }
                }

                AccDataType v_c;

                arg.cde_element_op_(v_c, v_acc);

                arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
            };

            make_ParallelTensorFunctor(f_ms_ns,
155
156
157
158
                                       arg.e_ms_ns_.GetLengths()[0],
                                       arg.e_ms_ns_.GetLengths()[1],
                                       arg.e_ms_ns_.GetLengths()[2],
                                       arg.e_ms_ns_.GetLengths()[3])(
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
                std::thread::hardware_concurrency());

            return 0;
        }

        float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
                  const StreamConfig& /* stream_config */ = StreamConfig{}) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg));
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
    {
        return true;
    }

    static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
                             const Tensor<BDataType>& b_ns_ks,
                             Tensor<EDataType>& e_ms_ns,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CDEElementwiseOperation cde_element_op)
    {
        return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
    }

    static auto MakeInvoker() { return Invoker{}; }

    virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
    {
        return std::make_unique<Invoker>(Invoker{});
    }

    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "ReferenceContraction_M2_N2_K2"
            << std::endl;
        // clang-format on

        return str.str();
    }
};

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};

    float scale = 1.f;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 23)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        const ck::index_t M0 = std::stoi(argv[4]);
        const ck::index_t M1 = std::stoi(argv[5]);

        const ck::index_t N0 = std::stoi(argv[6]);
        const ck::index_t N1 = std::stoi(argv[7]);

        const ck::index_t K0 = std::stoi(argv[8]);
        const ck::index_t K1 = std::stoi(argv[9]);

        a_ms_ks_lengths = {M0, M1, K0, K1};
        a_ms_ks_strides = {
            std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};

        b_ns_ks_lengths = {N0, N1, K0, K1};
        b_ns_ks_strides = {
            std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};

        e_ms_ns_lengths = {M0, M1, N0, N1};
        e_ms_ns_strides = {
265
            std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
266

267
        scale = std::stof(argv[22]);
268
269
270
271
272
273
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=no, 1=yes)\n");
274
        printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
275
276
277
278
279
280
281
        printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
        printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
        printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
        printf("arg22: scale\n");
        exit(0);
    }

282
283
284
285
286
287
288
289
    Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
    Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
    Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
    Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);

    std::cout << "a_ms_ks: " << a_ms_ks.GetDesc() << std::endl;
    std::cout << "b_ns_ks: " << b_ns_ks.GetDesc() << std::endl;
    std::cout << "e_ms_ns: " << e_ms_ns_host_result.GetDesc() << std::endl;
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    }

304
305
306
    DeviceMem a_device_buf(a_ms_ks.GetMemorySize());
    DeviceMem b_device_buf(b_ns_ks.GetMemorySize());
    DeviceMem e_device_buf(e_ms_ns_device_result.GetMemorySize());
307

308
309
    a_device_buf.ToDevice(a_ms_ks.data());
    b_device_buf.ToDevice(b_ns_ks.data());
310
311
312
313
314
315
316
317

    // set zero
    e_device_buf.SetZero();

    auto a_element_op   = AElementOp{};
    auto b_element_op   = BElementOp{};
    auto cde_element_op = CDEElementOp{scale};

318
319
    using ck::utils::empty_array;

320
321
322
323
324
    // device operation
    auto op       = DeviceOpInstance{};
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
                                    b_device_buf.GetDeviceBuffer(),
325
                                    empty_array(),
326
327
328
329
330
                                    e_device_buf.GetDeviceBuffer(),
                                    a_ms_ks_lengths,
                                    a_ms_ks_strides,
                                    b_ns_ks_lengths,
                                    b_ns_ks_strides,
331
332
                                    empty_array(),
                                    empty_array(),
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
                                    e_ms_ns_lengths,
                                    e_ms_ns_strides,
                                    a_element_op,
                                    b_element_op,
                                    cde_element_op);

    if(!op.IsSupportedArgument(argument))
    {
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

348
349
    ck::index_t M = ck::accumulate_n(
        e_ms_ns_lengths.begin(), NumDimM, ck::index_t{1}, std::multiplies<ck::index_t>{});
350

351
352
    ck::index_t N = ck::accumulate_n(
        e_ms_ns_lengths.begin() + NumDimM, NumDimN, ck::index_t{1}, std::multiplies<ck::index_t>{});
353

354
355
    ck::index_t K = ck::accumulate_n(
        a_ms_ks_lengths.begin() + NumDimM, NumDimK, ck::index_t{1}, std::multiplies<ck::index_t>{});
356
357
358
359
360
361
362
363
364
365
366
367

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << op.GetTypeString() << std::endl;

368
    e_device_buf.FromDevice(e_ms_ns_device_result.data());
369
370
371

    if(do_verification)
    {
372
        Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

        using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
                                                                  NumDimN,
                                                                  NumDimK,
                                                                  ADataType,
                                                                  BDataType,
                                                                  CShuffleDataType,
                                                                  AccDataType,
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  PassThrough>;

        auto ref_gemm    = ReferenceOpInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});

        ref_invoker.Run(ref_argument);

393
        for(size_t m0 = 0; m0 < e_ms_ns_host_result.GetLengths()[0]; ++m0)
394
        {
395
            for(size_t m1 = 0; m1 < e_ms_ns_host_result.GetLengths()[1]; ++m1)
396
            {
397
                for(size_t n0 = 0; n0 < e_ms_ns_host_result.GetLengths()[2]; ++n0)
398
                {
399
                    for(size_t n1 = 0; n1 < e_ms_ns_host_result.GetLengths()[3]; ++n1)
400
401
402
403
404
405
406
407
                    {
                        cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
                                       c_ms_ns_host_result(m0, m1, n0, n1));
                    }
                }
            }
        }

408
        return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
409
410
411
412
    }

    return 0;
}