profile_gemm_reduce_impl.hpp 15 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
rocking's avatar
rocking committed
2
#include "check_err.hpp"
Chao Liu's avatar
Chao Liu committed
3
4
5
6
7
8
9
10
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
11
#include "reduction_operator.hpp"
Chao Liu's avatar
Chao Liu committed
12
13
14
15
16
17
18
19
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

rocking5566's avatar
rocking5566 committed
20
21
22
using F32            = float;
using F16            = ck::half_t;
using DPtrsGlobal    = ck::Tuple<F32*, F32*>;
rocking5566's avatar
rocking5566 committed
23
using Div            = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
rocking5566's avatar
rocking5566 committed
24
25
26
using Identity       = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square         = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps  = ck::Tuple<Identity, Square>;
rocking5566's avatar
rocking5566 committed
27
using DOutElementOps = ck::Tuple<Div, Div>;
rocking5566's avatar
rocking5566 committed
28

Chao Liu's avatar
Chao Liu committed
29
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
rocking5566's avatar
rocking5566 committed
30
    DPtrsGlobal,
Chao Liu's avatar
Chao Liu committed
31
32
33
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
rocking5566's avatar
rocking5566 committed
34
35
    DInElementOps,
    DOutElementOps>;
Chao Liu's avatar
Chao Liu committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename DDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
67
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl;
    std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl;

112
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

rocking5566's avatar
rocking5566 committed
127
128
129
130
131
132
    using AElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using D0ReduceOp        = ck::reduce::Add<float>;
    using D1ReduceOp        = ck::reduce::Add<float>;
    using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryIdentic<float, float, true>;
rocking5566's avatar
rocking5566 committed
133
134
135
136
137
    using UnaryIdenticElementOp =
        ck::tensor_operation::element_wise::UnaryIdentic<float, float, false>;
    using UnarySquareElementOp =
        ck::tensor_operation::element_wise::UnarySquare<float, float, false>;
    using DxsInElementOps  = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
rocking5566's avatar
rocking5566 committed
138
    using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
rocking5566's avatar
rocking5566 committed
139

rocking5566's avatar
rocking5566 committed
140
141
142
143
144
145
146
147
    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};
    const auto d0_reduce_op = D0ReduceOp{};
    const auto d1_reduce_op = D1ReduceOp{};

    auto dxs_in_element_op  = DxsInElementOps{};
    auto dxs_out_element_op = DxsOutElementOps{M, M};
Chao Liu's avatar
Chao Liu committed
148
149
150

    if(do_verification)
    {
151
152
153
154
155
156
157
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                DDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
158

159
160
        using ReduceAccDataType = DDataType;

Chao Liu's avatar
Chao Liu committed
161
162
163
164
165
166
167
168
169
170
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
171
172
            ReduceAccDataType d0_acc = d0_reduce_op.GetIdentityValue();
            ReduceAccDataType d1_acc = d1_reduce_op.GetIdentityValue();
Chao Liu's avatar
Chao Liu committed
173
174
175

            for(int n = 0; n < N; ++n)
            {
176
177
178
179
                ReduceAccDataType c_val =
                    ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
                ReduceAccDataType d0_val = 0;
                ReduceAccDataType d1_val = 0;
180

rocking5566's avatar
rocking5566 committed
181
182
                dxs_in_element_op(ck::Number<0>{})(d0_val, c_val);
                dxs_in_element_op(ck::Number<1>{})(d1_val, c_val);
183
184
                d0_reduce_op(d0_acc, d0_val);
                d1_reduce_op(d1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
185
186
            }

rocking5566's avatar
rocking5566 committed
187
188
            dxs_out_element_op(ck::Number<0>{})(d0_acc, d0_acc);
            dxs_out_element_op(ck::Number<1>{})(d1_acc, d1_acc);
189
190
            d0_m_host_result(m) = ck::type_convert<DDataType>(d0_acc);
            d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc);
Chao Liu's avatar
Chao Liu committed
191
192
193
194
195
196
197
198
199
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
    DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace());
    DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace());

rocking5566's avatar
rocking5566 committed
200
201
202
    auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
                                     static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));

Chao Liu's avatar
Chao Liu committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
rocking5566's avatar
rocking5566 committed
264
                                          dxs_global,
Chao Liu's avatar
Chao Liu committed
265
266
267
268
269
270
271
272
273
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
rocking5566's avatar
rocking5566 committed
274
275
                                          dxs_in_element_op,
                                          dxs_out_element_op);
Chao Liu's avatar
Chao Liu committed
276
277
278
279
280

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
281
282
283
            // init DO, D1 to 0
            d0_device_buf.SetZero();
            d1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
284

JD's avatar
JD committed
285
286
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
287
288
289
290
291

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
292
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
                d0_device_buf.FromDevice(d0_m_device_result.mData.data());
                d1_device_buf.FromDevice(d1_m_device_result.mData.data());

rocking's avatar
rocking committed
316
317
318
                ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
                ck::utils::check_err(d0_m_device_result.mData, d0_m_host_result.mData);
                ck::utils::check_err(d1_m_device_result.mData, d1_m_host_result.mData);
Chao Liu's avatar
Chao Liu committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_device: ", d0_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_device: ", d1_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck