host_tensor.hpp 8.26 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
#ifndef HOST_TENSOR_HPP
#define HOST_TENSOR_HPP
3

Chao Liu's avatar
Chao Liu committed
4
5
6
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
7
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
8
#include <utility>
Chao Liu's avatar
Chao Liu committed
9
10
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
11

Chao Liu's avatar
Chao Liu committed
12
template <class Range>
Chao Liu's avatar
Chao Liu committed
13
std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim)
Chao Liu's avatar
Chao Liu committed
14
15
{
    bool first = true;
Chao Liu's avatar
Chao Liu committed
16
    for(auto&& v : range)
Chao Liu's avatar
Chao Liu committed
17
18
19
20
21
    {
        if(first)
            first = false;
        else
            os << delim;
Chao Liu's avatar
Chao Liu committed
22
        os << v;
Chao Liu's avatar
Chao Liu committed
23
24
25
26
    }
    return os;
}

Jing Zhang's avatar
fixed  
Jing Zhang committed
27
28
typedef enum
{
Chao Liu's avatar
Chao Liu committed
29
30
31
32
33
34
35
36
37
38
39
40
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
41
42
43
44
45
46
47
48
49
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
Chao Liu's avatar
Chao Liu committed
50
    constexpr std::size_t N = std::tuple_size<T>{};
Chao Liu's avatar
Chao Liu committed
51
52
53
54
55
56
57
58
59
60
61
62
63

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
Chao Liu's avatar
Chao Liu committed
64
    constexpr std::size_t N = std::tuple_size<T>{};
Chao Liu's avatar
Chao Liu committed
65
66
67
68

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
69
struct HostTensorDescriptor
Chao Liu's avatar
Chao Liu committed
70
{
Chao Liu's avatar
Chao Liu committed
71
    HostTensorDescriptor() = delete;
Chao Liu's avatar
Chao Liu committed
72
73

    template <typename X>
Chao Liu's avatar
Chao Liu committed
74
    HostTensorDescriptor(std::vector<X> lens);
Chao Liu's avatar
Chao Liu committed
75
76

    template <typename X, typename Y>
Chao Liu's avatar
Chao Liu committed
77
    HostTensorDescriptor(std::vector<X> lens, std::vector<Y> strides);
Chao Liu's avatar
Chao Liu committed
78
79
80
81

    void CalculateStrides();

    template <class Range>
Chao Liu's avatar
Chao Liu committed
82
    HostTensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
Chao Liu's avatar
Chao Liu committed
83
84
85
86
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
87
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
88
    HostTensorDescriptor(const Range1& lens, const Range2& strides)
Chao Liu's avatar
Chao Liu committed
89
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
Chao Liu's avatar
Chao Liu committed
90
91
    {
    }
Chao Liu's avatar
Chao Liu committed
92

Chao Liu's avatar
Chao Liu committed
93
    std::size_t GetNumOfDimension() const;
Chao Liu's avatar
Chao Liu committed
94
95
96
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
97
98
99
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
100
    template <class... Is>
101
    std::size_t GetOffsetFromMultiIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
102
    {
Chao Liu's avatar
Chao Liu committed
103
        assert(sizeof...(Is) == this->GetNumOfDimension());
Chao Liu's avatar
Chao Liu committed
104
105
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
106
107
108
109
110
111
112
    }

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;
};

Chao Liu's avatar
Chao Liu committed
113
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
114
{
Chao Liu's avatar
Chao Liu committed
115
116
117
118
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
119

Chao Liu's avatar
Chao Liu committed
120
121
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
122

Chao Liu's avatar
Chao Liu committed
123
124
125
126
127
128
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
129
130
131
132
133

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
134
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
149
150
151
152
153
154
155
156
157
158
159
160
161
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
162
    void operator()(std::size_t num_thread = std::thread::hardware_concurrency()) const
Chao Liu's avatar
Chao Liu committed
163
164
165
166
167
168
169
170
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
171
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
172
173
174

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
175
176
177
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
178
179
180
181
182
183
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
184
185
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
186
{
Chao Liu's avatar
Chao Liu committed
187
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
188
189
}

Chao Liu's avatar
Chao Liu committed
190
191
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
192
{
Chao Liu's avatar
Chao Liu committed
193
    template <class X>
Chao Liu's avatar
Chao Liu committed
194
    Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
195
196
    {
    }
Chao Liu's avatar
Chao Liu committed
197

Chao Liu's avatar
Chao Liu committed
198
    template <class X>
Chao Liu's avatar
Chao Liu committed
199
    Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
200
201
    {
    }
Chao Liu's avatar
Chao Liu committed
202

Chao Liu's avatar
Chao Liu committed
203
204
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
Chao Liu's avatar
Chao Liu committed
205
        : mDesc(lens, strides), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
206
207
    {
    }
Chao Liu's avatar
Chao Liu committed
208

Chao Liu's avatar
Chao Liu committed
209
    Tensor(const HostTensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}
Chao Liu's avatar
Chao Liu committed
210

Chao Liu's avatar
Chao Liu committed
211
212
213
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
Chao Liu's avatar
Chao Liu committed
214
        switch(mDesc.GetNumOfDimension())
Chao Liu's avatar
Chao Liu committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
254
        return mData[mDesc.GetOffsetFromMultiIndex(is...)];
Chao Liu's avatar
Chao Liu committed
255
256
257
258
259
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
260
        return mData[mDesc.GetOffsetFromMultiIndex(is...)];
Chao Liu's avatar
Chao Liu committed
261
262
263
264
265
266
267
268
269
270
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

Chao Liu's avatar
Chao Liu committed
271
    HostTensorDescriptor mDesc;
Chao Liu's avatar
Chao Liu committed
272
273
    std::vector<T> mData;
};
274

Chao Liu's avatar
Chao Liu committed
275
void ostream_HostTensorDescriptor(const HostTensorDescriptor& desc, std::ostream& os = std::cout)
Chao Liu's avatar
Chao Liu committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
{
    os << "dim " << desc.GetNumOfDimension() << ", ";

    os << "lengths {";
    LogRange(os, desc.GetLengths(), ", ");
    os << "}, ";

    os << "strides {";
    LogRange(os, desc.GetStrides(), ", ");
    os << "}" << std::endl;
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
    float max_diff  = -1;
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

310
#endif