main.cpp 12.9 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"

using InDataType  = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using InLayout  = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;

using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

// clang-format off
ltqin's avatar
ltqin committed
35
36
using DeviceConvWrWInstance = ck::tensor_operation::device::
    DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
ltqin's avatar
ltqin committed
37
38
39
40
41
42
43
44
45
        InDataType,                       // InDataType
        WeiDataType,                      // WeiDataType
        OutDataType,                      // OutDataType
        AccDataType,                      // AccDataType
        InElementOp,                      // InElementwiseOperation
        WeiElementOp,                     // WeiElementwiseOperation
        OutElementOp,                     // OutElementwiseOperation
        256,                              // BlockSize
        128,                              // MPerBlock
ltqin's avatar
ltqin committed
46
        128,                              // NPerBlock
ltqin's avatar
ltqin committed
47
48
49
50
51
        4,                                // K0PerBlock
        8,                                // K1
        32,                               // MPerXdl
        32,                               // NPerXdl
        2,                                // MXdlPerWave
ltqin's avatar
ltqin committed
52
        2,                                // NXdlPerWave
ltqin's avatar
ltqin committed
53
54
55
56
        S<1, 4, 16, 4>,                      // ABlockTransferThreadClusterLengths_K0_M_K1
        S<0, 3, 1, 2>,                       // ABlockTransferThreadClusterArrangeOrder
        S<0, 2, 1, 3>,                       // ABlockTransferSrcAccessOrder
        2,                                // ABlockTransferSrcVectorDim
ltqin's avatar
ltqin committed
57
        8,                                // ABlockTransferSrcScalarPerVector
ltqin's avatar
ltqin committed
58
        2,                                // ABlockTransferDstScalarPerVector_K1
ltqin's avatar
ltqin committed
59
        true,                             // ABlockLdsAddExtraM
ltqin's avatar
ltqin committed
60
61
62
63
        S<1, 4, 16, 4>,                      // BBlockTransferThreadClusterLengths_K0_N_K1
        S<0, 3, 1, 2>,                       // BBlockTransferThreadClusterArrangeOrder
        S<0, 2, 1, 3>,                       // BBlockTransferSrcAccessOrder
        2,                                // BBlockTransferSrcVectorDim
ltqin's avatar
ltqin committed
64
        8,                                // BBlockTransferSrcScalarPerVector
ltqin's avatar
ltqin committed
65
        2,                                // BBlockTransferDstScalarPerVector_K1
ltqin's avatar
ltqin committed
66
67
68
        true,                             // BBlockLdsAddExtraN
        1,                                // CShuffleMXdlPerWavePerShuffle
        1,                                // CShuffleNXdlPerWavePerShuffle
ltqin's avatar
ltqin committed
69
        S<1, 16, 1, 4>,                   // 
ltqin's avatar
ltqin committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        8>;                               // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on

using ReferenceConvWrwInstance = ck::tensor_operation::host::
    ReferenceConvWrw<InDataType, WeiDataType, OutDataType, InElementOp, WeiElementOp, OutElementOp>;

int main(int argc, char* argv[])
{
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;

    // Conv shape
    ck::index_t N               = 128;
    ck::index_t K               = 256;
ltqin's avatar
ltqin committed
85
    ck::index_t C               = 128;
ltqin's avatar
ltqin committed
86
87
88
89
90
91
92
93
94
95
96
97
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 2;
    ck::index_t conv_stride_w   = 2;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;
ltqin's avatar
ltqin committed
98
    ck::index_t split_k         = 1;
ltqin's avatar
ltqin committed
99
100
101
102
103
104
105

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
    }
ltqin's avatar
ltqin committed
106
    else if(argc == 20)
ltqin's avatar
ltqin committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        N               = std::stoi(argv[4]);
        K               = std::stoi(argv[5]);
        C               = std::stoi(argv[6]);
        Y               = std::stoi(argv[7]);
        X               = std::stoi(argv[8]);
        Hi              = std::stoi(argv[9]);
        Wi              = std::stoi(argv[10]);
        conv_stride_h   = std::stoi(argv[11]);
        conv_stride_w   = std::stoi(argv[12]);
        conv_dilation_h = std::stoi(argv[13]);
        conv_dilation_w = std::stoi(argv[14]);
        in_left_pad_h   = std::stoi(argv[15]);
        in_left_pad_w   = std::stoi(argv[16]);
        in_right_pad_h  = std::stoi(argv[17]);
        in_right_pad_w  = std::stoi(argv[18]);
ltqin's avatar
ltqin committed
127
        split_k         = std::stoi(argv[19]);
ltqin's avatar
ltqin committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        exit(0);
    }

    const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

    const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
    const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
    const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
    const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

    // tensor layout
    auto f_host_tensor_descriptor = [](std::size_t N_,
                                       std::size_t C_,
                                       std::size_t H,
                                       std::size_t W,
                                       auto layout) {
        if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
                     ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
                     ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                        std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
        }
        else if constexpr(ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NHWC>::value ||
                          ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::KYXC>::value ||
                          ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NHWK>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                        std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
        }
    };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<WeiDataType> wei_k_c_y_x_host_result(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
ltqin's avatar
ltqin committed
177
178
179
    Tensor<WeiDataType> wei_k_c_y_x_device_result(
        f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
ltqin's avatar
ltqin committed
180
181
182
183
184
185
186
187
188
189

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
    std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
ltqin's avatar
ltqin committed
190
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
ltqin's avatar
ltqin committed
191
192
        break;
    default:
ltqin's avatar
ltqin committed
193
194
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
ltqin's avatar
ltqin committed
195
    }
ltqin's avatar
ltqin committed
196
    wei_k_c_y_x_device_result.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{0});
ltqin's avatar
ltqin committed
197
198

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
ltqin's avatar
ltqin committed
199
200
201
    DeviceMem wei_device_buf(sizeof(WeiDataType) *
                             wei_k_c_y_x_device_result.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
ltqin's avatar
ltqin committed
202
203
204

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
ltqin's avatar
ltqin committed
205
206
207
    wei_device_buf.ToDevice(wei_k_c_y_x_device_result.mData.data());
    LogRangeAsType<float>(std::cout << "wei_device(before): ", wei_k_c_y_x_device_result.mData, ",")
        << std::endl;
ltqin's avatar
ltqin committed
208
209

    // do GEMM
ltqin's avatar
ltqin committed
210
    auto conv     = DeviceConvWrWInstance{};
ltqin's avatar
ltqin committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    auto invoker  = conv.MakeInvoker();
    auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                      static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                      static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                      N,
                                      K,
                                      C,
                                      std::vector<ck::index_t>{{Hi, Wi}},
                                      std::vector<ck::index_t>{{Y, X}},
                                      std::vector<ck::index_t>{{Ho, Wo}},
                                      conv_filter_strides,
                                      conv_filter_dilations,
                                      input_left_pads,
                                      input_right_pads,
                                      InElementOp{},
                                      WeiElementOp{},
ltqin's avatar
ltqin committed
227
228
                                      OutElementOp{},
                                      split_k);
ltqin's avatar
ltqin committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

    if(!conv.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;

    std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
                            sizeof(WeiDataType) * (K * C * Y * X) +
                            sizeof(OutDataType) * (N * K * Ho * Wo);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    if(do_verification)
    {
        auto ref_conv    = ReferenceConvWrwInstance{};
        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                  wei_k_c_y_x_host_result,
                                                  out_n_k_ho_wo,
                                                  conv_filter_strides,
                                                  conv_filter_dilations,
                                                  input_left_pads,
                                                  input_right_pads,
                                                  InElementOp{},
                                                  WeiElementOp{},
                                                  OutElementOp{});

        ref_invoker.Run(ref_argument);

        wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());

ltqin's avatar
ltqin committed
272
273
274
275
276
277
278
279
280
281
        if(1)
        {
            LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl;
            LogRangeAsType<float>(
                std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",")
                << std::endl;
            LogRangeAsType<float>(std::cout << "wei_host  : ", wei_k_c_y_x_host_result.mData, ",")
                << std::endl;
        }
ltqin's avatar
ltqin committed
282
283
284
        check_error(wei_k_c_y_x_host_result, wei_k_c_y_x_device_result);
    }
}