profile_transpose.cpp 2.67 KB
Newer Older
Astha Rai's avatar
Astha Rai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "profiler/profile_transpose_impl.hpp"
#include "profiler_operation_registry.hpp"

enum struct MatrixLayout
{
    NCDHW, // 0
    NCHWD, // 1
};

enum struct DataType
{
    F32_F32_F32_F32_F32, // 0
    F16_F16_F16_F16_F16, // 1
};

#define OP_NAME "transpose"
#define OP_DESC "Transpose"

int profile_transpose(int argc, char* argv[])
{
    if(argc != 15)
    {
        printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
        printf("arg2: data type (0: fp32; 1: fp16)\n");
        printf("arg3: matrix layout (NCDHW -> NDCHW);\n");
        printf("arg4: verification (0: no; 1: yes)\n");
        printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
        printf("arg6: print tensor value (0: no; 1: yes)\n");
        printf("arg7: time kernel (0=no, 1=yes)\n");
        printf("arg8 to 13: N, C, D, H, W\n");
        exit(1);
    }

    const auto data_type       = static_cast<DataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<MatrixLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);

    const int N = std::stoi(argv[8]);
    const int C = std::stoi(argv[9]);
    const int D = std::stoi(argv[10]);
    const int H = std::stoi(argv[11]);
    const int W = std::stoi(argv[12]);

    using F32 = float;
    using F16 = ck::half_t;
    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    auto profile = [&](auto a_type, auto b_type) {
        using ADataType = decltype(a_type);
        using BDataType = decltype(b_type);

        // using ALayout = decltype(a_layout);
        // using BLayout = decltype(b_layout);

        bool pass = ck::profiler::profile_transpose_impl<ADataType, BDataType>(
            do_verification, init_method, do_log, time_kernel, N, C, D, H, W);

        return pass ? 0 : 1;
    };

    if(data_type == GemmDataType::F32_F32_F32_F32_F32)
    {
        return profile(F32{}, F32{});
    }
    else if(data_type == GemmDataType::F16_F16_F16_F16_F16)
    {
        return profile(F16{}, F16{});
    }
    else
    {
        std::cout << "this data_type & layout is not implemented" << std::endl;

        return 1;
    }
}

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_splitk);