host_conv.hpp 25.3 KB
Newer Older
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
#include "host_tensor.hpp"
3

Jing Zhang's avatar
Jing Zhang committed
4
5
6
template <typename T>
inline auto activ(T v, const ck::index_t activ_type)
{
Jing Zhang's avatar
test  
Jing Zhang committed
7
    const T alpha = 0.30000001192092896; 
Jing Zhang's avatar
Jing Zhang committed
8
9
10
    switch(activ_type)
    {
    case 0: return v;
Jing Zhang's avatar
test  
Jing Zhang committed
11
    case 1: return (v >= 0 ? v : alpha * v);
Jing Zhang's avatar
Jing Zhang committed
12
13
14
15
16
    case 2: return (1 / (1 + exp(-v)));
    default: throw std::runtime_error("unsupported activ type"); break;
    }
}

zjing14's avatar
zjing14 committed
17
18
19
20
21
22
23
template <typename TIn,
          typename TWei,
          typename TOut,
          typename ConvStrides,
          typename ConvDilations,
          typename InLeftPads,
          typename InRightPads>
24
25
26
27
28
29
void host_direct_convolution(const Tensor<TIn>& in,
                             const Tensor<TWei>& wei,
                             Tensor<TOut>& out,
                             const ConvStrides& conv_strides,
                             const ConvDilations& conv_dilations,
                             const InLeftPads& in_left_pads,
Chao Liu's avatar
tidy  
Chao Liu committed
30
                             const InRightPads&,
Jing Zhang's avatar
Jing Zhang committed
31
32
                             const ConvTensorLayout layout = ConvTensorLayout::NCHW,
                             const ck::index_t activ_type  = 0)
33
34
35
{
    using namespace ck;

36
37
    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
38

39
    auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
40
        double v = 0;
41
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
42
        {
43
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
44
            {
45
46
                int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
47
                {
48
49
50
                    int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[3])
51
                    {
52
53
                        v += static_cast<const double>(in(n, c, hi, wi)) *
                             static_cast<const double>(wei(k, c, y, x));
54
55
56
57
                    }
                }
            }
        }
Jing Zhang's avatar
Jing Zhang committed
58
        out(n, k, ho, wo) = activ(v, activ_type);
59
60
    };

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    auto f_nhwc = [&](auto n, auto ho, auto wo, auto k) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[3]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[1]; ++y)
            {
                int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                for(int x = 0; x < wei.mDesc.GetLengths()[2]; ++x)
                {
                    int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[1] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[2])
                    {
                        v += static_cast<const double>(in(n, hi, wi, c)) *
                             static_cast<const double>(wei(k, y, x, c));
                    }
                }
            }
        }
Jing Zhang's avatar
Jing Zhang committed
80
        out(n, ho, wo, k) = activ(v, activ_type);
81
    };
82

Chao Liu's avatar
tidy  
Chao Liu committed
83
    if(layout == ConvTensorLayout::NCHW)
84
85
86
87
88
89
    {
        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
Chao Liu's avatar
tidy  
Chao Liu committed
90
91
92
    }
    else if(layout == ConvTensorLayout::NHWC)
    {
93
94
95
96
97
        make_ParallelTensorFunctor(f_nhwc,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
Chao Liu's avatar
tidy  
Chao Liu committed
98
99
100
101
    }
    else
    {
        throw std::runtime_error("wrong! not supported layout");
102
    }
103
104
}

Jing Zhang's avatar
Jing Zhang committed
105
106
107
108
109
110
111
112
113
template <typename TIn,
          typename TWei,
          typename TOut,
          typename ConvStrides,
          typename ConvDilations,
          typename InLeftPads,
          typename InRightPads>
void host_direct_convolution_nchwc(const Tensor<TIn>& in,
                                   const Tensor<TWei>& wei,
Jing Zhang's avatar
Jing Zhang committed
114
                                   const Tensor<TOut>& bias,
Jing Zhang's avatar
Jing Zhang committed
115
116
117
118
119
120
121
122
123
124
125
126
127
                                   Tensor<TOut>& out,
                                   const ConvStrides& conv_strides,
                                   const ConvDilations& conv_dilations,
                                   const InLeftPads& in_left_pads,
                                   const InRightPads&,
                                   const ck::index_t activ_type = 0)
{
    using namespace ck;

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};

    auto f_nchw = [&](auto n, auto k0, auto ho, auto wo, auto k1) {
Jing Zhang's avatar
Jing Zhang committed
128
129
        double v    = 0;
        const int k = k0 * out.mDesc.GetLengths()[4] + k1;
Jing Zhang's avatar
Jing Zhang committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        for(int c0 = 0; c0 < wei.mDesc.GetLengths()[1]; ++c0)
        {
            for(int c1 = 0; c1 < wei.mDesc.GetLengths()[4]; ++c1)
            {
                for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
                {
                    int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                    for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                    {
                        int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                        if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                           wi < in.mDesc.GetLengths()[3])
                        {
                            v += static_cast<const double>(in(n, c0, hi, wi, c1)) *
Jing Zhang's avatar
Jing Zhang committed
144
                                 static_cast<const double>(wei(k, c0, y, x, c1));
Jing Zhang's avatar
Jing Zhang committed
145
146
147
148
149
                        }
                    }
                }
            }
        }
Jing Zhang's avatar
Jing Zhang committed
150
        out(n, k0, ho, wo, k1) = activ(v, activ_type) + bias(k0, k1);
Jing Zhang's avatar
Jing Zhang committed
151
152
153
154
155
156
157
158
159
160
    };

    make_ParallelTensorFunctor(f_nchw,
                               out.mDesc.GetLengths()[0],
                               out.mDesc.GetLengths()[1],
                               out.mDesc.GetLengths()[2],
                               out.mDesc.GetLengths()[3],
                               out.mDesc.GetLengths()[4])(std::thread::hardware_concurrency());
}

Jing Zhang's avatar
Jing Zhang committed
161
162
163
164
165
166
167
168
169
170
template <typename TIn,
          typename TWei,
          typename TOut,
          typename ConvStrides,
          typename ConvDilations,
          typename InLeftPads,
          typename InRightPads>
void host_direct_convolution_add_nchwc(const Tensor<TIn>& in,
                                       const Tensor<TWei>& wei,
                                       const Tensor<TOut>& add,
Jing Zhang's avatar
Jing Zhang committed
171
                                       const Tensor<TOut>& bias,
Jing Zhang's avatar
Jing Zhang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
                                       Tensor<TOut>& add_host,
                                       Tensor<TOut>& out_host,
                                       const ConvStrides& conv_strides,
                                       const ConvDilations& conv_dilations,
                                       const InLeftPads& in_left_pads,
                                       const InRightPads&,
                                       const ck::index_t activ_type = 0)
{
    using namespace ck;

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};

    auto f_nchw = [&](auto n, auto k0, auto ho, auto wo, auto k1) {
        double v = 0;
        for(int c0 = 0; c0 < wei.mDesc.GetLengths()[1]; ++c0)
        {
            for(int c1 = 0; c1 < wei.mDesc.GetLengths()[4]; ++c1)
            {
                for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
                {
                    int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                    for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                    {
                        int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                        if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                           wi < in.mDesc.GetLengths()[3])
                        {
                            v += static_cast<const double>(in(n, c0, hi, wi, c1)) *
                                 static_cast<const double>(
                                     wei(k0 * out_host.mDesc.GetLengths()[4] + k1, c0, y, x, c1));
                        }
                    }
                }
            }
        }

Jing Zhang's avatar
Jing Zhang committed
209
        v = activ(v, activ_type) + bias(k0, k1);
Jing Zhang's avatar
Jing Zhang committed
210

Jing Zhang's avatar
Jing Zhang committed
211
212
213
214
215
216
217
218
219
        const int hox2 = ho * 2;
        const int wox2 = wo * 2;

        out_host(n, k0, ho, wo, k1) = v;

        add_host(n, k0, hox2, wox2, k1)         = v + add(n, k0, hox2, wox2, k1);
        add_host(n, k0, hox2, wox2 + 1, k1)     = v + add(n, k0, hox2, wox2 + 1, k1);
        add_host(n, k0, hox2 + 1, wox2, k1)     = v + add(n, k0, hox2 + 1, wox2, k1);
        add_host(n, k0, hox2 + 1, wox2 + 1, k1) = v + add(n, k0, hox2 + 1, wox2 + 1, k1);
Jing Zhang's avatar
Jing Zhang committed
220
221
    };

Jing Zhang's avatar
Jing Zhang committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    make_ParallelTensorFunctor(f_nchw,
                               out_host.mDesc.GetLengths()[0],
                               out_host.mDesc.GetLengths()[1],
                               out_host.mDesc.GetLengths()[2],
                               out_host.mDesc.GetLengths()[3],
                               out_host.mDesc.GetLengths()[4])(std::thread::hardware_concurrency());
}

template <typename TIn,
          typename TWei,
          typename TOut,
          typename ConvStrides,
          typename ConvDilations,
          typename InLeftPads,
          typename InRightPads>
void host_direct_convolution_maxpool_nchwc(const Tensor<TIn>& in,
                                           const Tensor<TWei>& wei,
                                           const Tensor<TOut>& bias,
                                           Tensor<TOut>& out_host,
                                           Tensor<TOut>& max_host,
                                           const ConvStrides& conv_strides,
                                           const ConvDilations& conv_dilations,
                                           const InLeftPads& in_left_pads,
                                           const InRightPads&,
                                           const ck::index_t activ_type = 0)
{
    using namespace ck;

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};

    auto f_nchw = [&](auto n, auto k0, auto ho, auto wo, auto k1) {
        double v = 0;
        for(int c0 = 0; c0 < wei.mDesc.GetLengths()[1]; ++c0)
        {
            for(int c1 = 0; c1 < wei.mDesc.GetLengths()[4]; ++c1)
            {
                for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
                {
                    int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                    for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                    {
                        int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                        if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                           wi < in.mDesc.GetLengths()[3])
                        {
                            v += static_cast<const double>(in(n, c0, hi, wi, c1)) *
                                 static_cast<const double>(
                                     wei(k0 * out_host.mDesc.GetLengths()[4] + k1, c0, y, x, c1));
                        }
                    }
                }
            }
        }

Jing Zhang's avatar
test  
Jing Zhang committed
277
278
        v += bias(k0, k1);
        v = activ(v, activ_type); 
Jing Zhang's avatar
Jing Zhang committed
279
280
281
282

        out_host(n, k0, ho, wo, k1) = v;
    };

Jing Zhang's avatar
Jing Zhang committed
283
284
285
286
287
288
    make_ParallelTensorFunctor(f_nchw,
                               out_host.mDesc.GetLengths()[0],
                               out_host.mDesc.GetLengths()[1],
                               out_host.mDesc.GetLengths()[2],
                               out_host.mDesc.GetLengths()[3],
                               out_host.mDesc.GetLengths()[4])(std::thread::hardware_concurrency());
Jing Zhang's avatar
Jing Zhang committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

    auto maxpool_nchw = [&](auto n, auto k0, auto ho, auto wo, auto k1) {
        auto hx = ho * 2;
        auto wx = wo * 2;

        auto v0 = out_host(n, k0, hx, wx, k1);
        auto v1 = out_host(n, k0, hx, wx + 1, k1);
        auto v2 = out_host(n, k0, hx + 1, wx, k1);
        auto v3 = out_host(n, k0, hx + 1, wx + 1, k1);

        max_host(n, k0, ho, wo, k1) = std::max({v0, v1, v2, v3});
    };

    make_ParallelTensorFunctor(maxpool_nchw,
                               max_host.mDesc.GetLengths()[0],
                               max_host.mDesc.GetLengths()[1],
                               max_host.mDesc.GetLengths()[2],
                               max_host.mDesc.GetLengths()[3],
                               max_host.mDesc.GetLengths()[4])(std::thread::hardware_concurrency());
Jing Zhang's avatar
Jing Zhang committed
308
309
}

zjing14's avatar
zjing14 committed
310
template <typename TIn, typename TWei, typename TOut, typename InLeftPads, typename InRightPads>
311
312
313
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
314
315
                                   InLeftPads,
                                   InRightPads)
316
317
318
319
320
321
{
    using namespace ck;

    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;

Chao Liu's avatar
tidy  
Chao Liu committed
322
323
    std::size_t N = in_nchw.mDesc.GetLengths()[0];
    std::size_t C = in_nchw.mDesc.GetLengths()[1];
324
325
326
327
328

    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];

Chao Liu's avatar
tidy  
Chao Liu committed
329
330
    std::size_t Ho = out_nkhw.mDesc.GetLengths()[2];
    std::size_t Wo = out_nkhw.mDesc.GetLengths()[3];
331

332
333
    index_t h_pad_low = InLeftPads{}.Get(Number<0>{});
    index_t w_pad_low = InLeftPads{}.Get(Number<1>{});
334
335
336
337

    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;

Chao Liu's avatar
tidy  
Chao Liu committed
338
339
    std::size_t HTile = (Ho + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (Wo + WoPerTile - 1) / WoPerTile;
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});

    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
        {
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
            {
                int wi = WoPerTile * wtile + i - w_pad_low;

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
                }
                else
                {
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
                }
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
    };

    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
        {
            for(int i = 0; i < WiPerTile; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, htile, wtile, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
        {
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
            {
Chao Liu's avatar
Chao Liu committed
529
                std::size_t wo         = WoPerTile * wtile + i;
530
531
532
533
534
535
536
537
538
539
540
541
542
543
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
}