driver.hip.cpp 24.7 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include "config.h"
Chao Liu's avatar
Chao Liu committed
6
#include "tensor.hpp"
7
8
9
10
11
12
13
14
15
16
#include "ConstantTensorDescriptor.hip.hpp"
#include "conv_common.hip.hpp"
#include "device_direct_convolution_1.hpp"
#include "device_direct_convolution_2.hpp"
#include "device_implicit_gemm_convolution_1_nchw_kcsr_nkhw.hpp"
#include "device_implicit_gemm_convolution_1_nchw_srck_nkhw.hpp"
#include "device_implicit_gemm_convolution_1_chwn_csrk_khwn.hpp"
#include "device_implicit_gemm_convolution_1_chwn_csrk_khwn_padded.hpp"
#include "device_implicit_gemm_convolution_2_cnhw_csrk_knhw.hpp"
//#include "device_winograd_convolution.hip.hpp"
Chao Liu's avatar
Chao Liu committed
17

Chao Liu's avatar
Chao Liu committed
18
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
19
20
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
21
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
22
    {
Chao Liu's avatar
Chao Liu committed
23
        return 1;
Chao Liu's avatar
Chao Liu committed
24
25
26
    }
};

Chao Liu's avatar
Chao Liu committed
27
28
29
30
31
32
33
34
35
36
37
38
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

Chao Liu's avatar
Chao Liu committed
39
40
41
42
43
44
45
46
47
48
49
50
51
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
#if 0
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
#elif 1
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
Chao Liu's avatar
Chao Liu committed
52
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
Chao Liu's avatar
Chao Liu committed
53
54
55
56
57
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
        std::array<unsigned long, sizeof...(Ts)> dims = {{Xs...}};
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
                               [](bool init, unsigned long x) -> int { return init != (x % 2); })
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
73
74
75
76
77
78
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
79
80
81
82
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
97
98
99
100
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
101
102
103
104
105
106
107
108
109
110
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

111
112
113
template <class T, class LowerPads, class UpperPads>
void host_direct_convolution(
    const Tensor<T>& in_nchw, const Tensor<T>& wei_kcsr, Tensor<T>& out, LowerPads, UpperPads)
Chao Liu's avatar
Chao Liu committed
114
{
115
116
117
118
119
120
    unsigned h_pad_low = LowerPads{}.Get(Number<0>{});
    unsigned w_pad_low = LowerPads{}.Get(Number<1>{});

    unsigned h_pad_up = UpperPads{}.Get(Number<0>{});
    unsigned w_pad_up = UpperPads{}.Get(Number<1>{});

Chao Liu's avatar
Chao Liu committed
121
122
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
123
        for(int c = 0; c < wei_kcsr.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
124
        {
Chao Liu's avatar
Chao Liu committed
125
            for(int y = 0; y < wei_kcsr.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
126
            {
127
                int hi = ho + y - h_pad_low;
Chao Liu's avatar
Chao Liu committed
128
                for(int x = 0; x < wei_kcsr.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
129
                {
130
131
132
133
134
135
                    int wi = wo + x - w_pad_low;
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
                        v += in_nchw(n, c, hi, wi) * wei_kcsr(k, c, y, x);
                    }
Chao Liu's avatar
Chao Liu committed
136
137
138
139
140
141
142
143
144
145
146
147
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
148
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
149
150
}

151
152
153
template <class T, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(
    const Tensor<T>& in_nchw, const Tensor<T>& wei_kcsr, Tensor<T>& out, LowerPads, UpperPads)
Chao Liu's avatar
Chao Liu committed
154
{
Chao Liu's avatar
Chao Liu committed
155
156
157
    constexpr std::size_t OutTileSizeH = 2;
    constexpr std::size_t OutTileSizeW = 2;

Chao Liu's avatar
Chao Liu committed
158
159
160
161
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
162

Chao Liu's avatar
Chao Liu committed
163
164
165
    std::size_t K = wei_kcsr.mDesc.GetLengths()[0];
    std::size_t S = wei_kcsr.mDesc.GetLengths()[2];
    std::size_t R = wei_kcsr.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
166
167
168
169

    std::size_t HO = out.mDesc.GetLengths()[2];
    std::size_t WO = out.mDesc.GetLengths()[3];

170
171
172
173
174
175
    unsigned h_pad_low = LowerPads{}.Get(Number<0>{});
    unsigned w_pad_low = LowerPads{}.Get(Number<1>{});

    unsigned h_pad_up = UpperPads{}.Get(Number<0>{});
    unsigned w_pad_up = UpperPads{}.Get(Number<1>{});

Chao Liu's avatar
Chao Liu committed
176
177
178
179
180
    std::size_t InTileSizeH = OutTileSizeH + S - 1;
    std::size_t InTileSizeW = OutTileSizeW + R - 1;

    std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH;
    std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW;
Chao Liu's avatar
Chao Liu committed
181

Chao Liu's avatar
Chao Liu committed
182
183
184
185
186
187
188
189
190
    Tensor<T> in_hold({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> in_transform({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> wei_transform({K, C, InTileSizeH, InTileSizeW});
    Tensor<T> out_transform({N, K, Y, X, InTileSizeH, InTileSizeH});
    Tensor<T> out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW});

    auto f_in_hold = [&](auto n, auto c, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
191
            int hi = OutTileSizeH * y + j - h_pad_low;
Chao Liu's avatar
Chao Liu committed
192
193
            for(int i = 0; i < InTileSizeW; ++i)
            {
194
195
196
197
198
199
200
201
202
203
204
                int wi = OutTileSizeW * x + i - w_pad_low;

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
                    in_hold(n, c, y, x, j, i) = in_nchw(n, c, hi, wi);
                }
                else
                {
                    in_hold(n, c, y, x, j, i) = T(0);
                }
Chao Liu's avatar
Chao Liu committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto y, auto x) {
        in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) -
                                         in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
Chao Liu's avatar
Chao Liu committed
248
        wei_transform(k, c, 0, 0) = wei_kcsr(k, c, 0, 0);
Chao Liu's avatar
Chao Liu committed
249
        wei_transform(k, c, 0, 1) =
Chao Liu's avatar
Chao Liu committed
250
            0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2);
Chao Liu's avatar
Chao Liu committed
251
        wei_transform(k, c, 0, 2) =
Chao Liu's avatar
Chao Liu committed
252
253
            0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2);
        wei_transform(k, c, 0, 3) = wei_kcsr(k, c, 0, 2);
Chao Liu's avatar
Chao Liu committed
254
255

        wei_transform(k, c, 1, 0) =
Chao Liu's avatar
Chao Liu committed
256
257
258
259
260
261
262
263
264
265
266
            0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0);
        wei_transform(k, c, 1, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) +
                                    0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 1, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) -
                                    0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
267
        wei_transform(k, c, 1, 3) =
Chao Liu's avatar
Chao Liu committed
268
            0.5 * wei_kcsr(k, c, 0, 2) + 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
269
270

        wei_transform(k, c, 2, 0) =
Chao Liu's avatar
Chao Liu committed
271
272
273
274
275
276
277
278
279
280
281
            0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0);
        wei_transform(k, c, 2, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) -
                                    0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 2, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) +
                                    0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
282
        wei_transform(k, c, 2, 3) =
Chao Liu's avatar
Chao Liu committed
283
            0.5 * wei_kcsr(k, c, 0, 2) - 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
284

Chao Liu's avatar
Chao Liu committed
285
        wei_transform(k, c, 3, 0) = wei_kcsr(k, c, 2, 0);
Chao Liu's avatar
Chao Liu committed
286
        wei_transform(k, c, 3, 1) =
Chao Liu's avatar
Chao Liu committed
287
            0.5 * wei_kcsr(k, c, 2, 0) + 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
288
        wei_transform(k, c, 3, 2) =
Chao Liu's avatar
Chao Liu committed
289
290
            0.5 * wei_kcsr(k, c, 2, 0) - 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 3, 3) = wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    };

    auto f_out_transform = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            for(int i = 0; i < InTileSizeW; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, y, x, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto y, auto x) {
        out_hold(n, k, y, x, 0, 0) =
            out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) +
            out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) +
            out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) +
            out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2);
        out_hold(n, k, y, x, 0, 1) =
            out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) -
            out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) -
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) +
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 2, 3);
        out_hold(n, k, y, x, 1, 0) =
            out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) +
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) -
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) -
            out_transform(n, k, y, x, 3, 2);
        out_hold(n, k, y, x, 1, 1) =
            out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) -
            out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) -
            out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) +
            out_transform(n, k, y, x, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < OutTileSizeH; ++j)
        {
            std::size_t ho = OutTileSizeH * y + j;
            for(int i = 0; i < OutTileSizeW; ++i)
            {
Chao Liu's avatar
Chao Liu committed
342
                std::size_t wo    = OutTileSizeW * x + i;
Chao Liu's avatar
Chao Liu committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
                out(n, k, ho, wo) = out_hold(n, k, y, x, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
362
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(ref.mData[i] - result.mData[i]);
        float diff = std::abs(ref.mData[i] - result.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main()
{
Chao Liu's avatar
Chao Liu committed
382
#if 0
Chao Liu's avatar
Chao Liu committed
383
    constexpr unsigned N  = 1;
Chao Liu's avatar
Chao Liu committed
384
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
385
386
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
Chao Liu's avatar
tune  
Chao Liu committed
387
    constexpr unsigned K  = 1;
Chao Liu's avatar
Chao Liu committed
388
389
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
390

Chao Liu's avatar
Chao Liu committed
391
392
    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
Chao Liu's avatar
Chao Liu committed
393
#elif 0
394
    // 3x3, 34x34
Chao Liu's avatar
Chao Liu committed
395
396
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
Chao Liu's avatar
Chao Liu committed
397
398
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
399
400
401
    constexpr unsigned K = 64;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
402
403
404

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
Chao Liu's avatar
Chao Liu committed
405
#elif 0
406
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
407
408
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
Chao Liu's avatar
Chao Liu committed
409
410
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
Chao Liu's avatar
Chao Liu committed
411
412
413
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
414
#elif 0
415
416
417
418
419
420
421
422
423
424
    // 3x3, 58x58
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 58;
    constexpr unsigned WI = 58;
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
#elif 0
    // 5x5, 36x36
Chao Liu's avatar
Chao Liu committed
425
    constexpr unsigned N  = 64;
Chao Liu's avatar
Chao Liu committed
426
427
428
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 36;
    constexpr unsigned WI = 36;
Chao Liu's avatar
Chao Liu committed
429
    constexpr unsigned K  = 64;
Chao Liu's avatar
Chao Liu committed
430
431
    constexpr unsigned S  = 5;
    constexpr unsigned R  = 5;
Chao Liu's avatar
Chao Liu committed
432
433
434

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
435
436
437
438
439
440
441
442
443
#elif 0
    // 7x7, 38x38
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 38;
    constexpr unsigned WI = 38;
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 7;
    constexpr unsigned R  = 7;
Chao Liu's avatar
Chao Liu committed
444
445
446

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
447
#elif 0
448
449
450
451
452
453
454
455
    // 3x3, 58x58
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 128;
    constexpr unsigned HI = 58;
    constexpr unsigned WI = 58;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
456
457
458
459
460
461
462
463
464
465
466
467
#elif 0
    // 3x3 filter, 58x58 image, 0x0 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 128;
    constexpr unsigned HI = 58;
    constexpr unsigned WI = 58;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
Chao Liu's avatar
Chao Liu committed
468
#elif 0
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    // 3x3 filter, 56x56 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 128;
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
#elif 0
    // 3x3 filter, 28x28 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
    constexpr unsigned K  = 512;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
Chao Liu's avatar
Chao Liu committed
492
#elif 1
Chao Liu's avatar
Chao Liu committed
493
494
495
496
497
498
499
500
501
502
503
    // 1x1 filter, 28x28 image
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
    constexpr unsigned K  = 512;
    constexpr unsigned S  = 1;
    constexpr unsigned R  = 1;

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
504
505
506
507
508
509
510
511
512
513
514
515
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 20;
    constexpr unsigned WI = 84;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
Chao Liu's avatar
Chao Liu committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 112;
    constexpr unsigned WI = 112;
    constexpr unsigned K  = 128;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 20;
    constexpr unsigned WI = 86;
    constexpr unsigned K  = 512;
    constexpr unsigned S  = 5;
    constexpr unsigned R  = 5;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 192;
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
    constexpr unsigned K  = 32;
    constexpr unsigned S  = 5;
    constexpr unsigned R  = 5;

    constexpr unsigned HPad = 2;
    constexpr unsigned WPad = 2;
Chao Liu's avatar
Chao Liu committed
552
#endif
Chao Liu's avatar
Chao Liu committed
553

554
555
556
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
557
558
    auto in_nchw_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_kcsr_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
559
560
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
        in_nchw_desc, wei_kcsr_desc, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
561

Chao Liu's avatar
Chao Liu committed
562
563
564
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
    ostream_ConstantTensorDescriptor(wei_kcsr_desc, std::cout << "wei_kcsr_desc: ");
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
565

Chao Liu's avatar
Chao Liu committed
566
567
568
569
    Tensor<float> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<float> wei_kcsr(make_TensorDescriptor(wei_kcsr_desc));
    Tensor<float> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<float> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
570

Chao Liu's avatar
Chao Liu committed
571
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
572

Chao Liu's avatar
Chao Liu committed
573
#if 0
Chao Liu's avatar
Chao Liu committed
574
575
    in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
576
#elif 1
Chao Liu's avatar
Chao Liu committed
577
578
    in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
579
580
581
#elif 1
    in_nchw.GenerateTensorValue(GeneratorTensor_2{-2, 2}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
582
583
#endif

Chao Liu's avatar
Chao Liu committed
584
    unsigned nrepeat = 200;
Chao Liu's avatar
Chao Liu committed
585

Chao Liu's avatar
Chao Liu committed
586
#if 1
Chao Liu's avatar
Chao Liu committed
587
#if 0
Chao Liu's avatar
Chao Liu committed
588
    device_direct_convolution_1
589
#elif 0
Chao Liu's avatar
Chao Liu committed
590
591
    device_direct_convolution_2
#elif 0
Chao Liu's avatar
Chao Liu committed
592
    device_implicit_gemm_convolution_1_nchw_kcsr_nkhw
593
#elif 0
Chao Liu's avatar
Chao Liu committed
594
    device_implicit_gemm_convolution_1_nchw_srck_nkhw
Chao Liu's avatar
Chao Liu committed
595
#elif 0
596
    device_implicit_gemm_convolution_1_chwn_csrk_khwn
Chao Liu's avatar
Chao Liu committed
597
#elif 1
598
    device_implicit_gemm_convolution_2_cnhw_csrk_knhw
599
#endif
Chao Liu's avatar
Chao Liu committed
600
    (in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device, nrepeat);
601

Chao Liu's avatar
Chao Liu committed
602
#elif 1
Chao Liu's avatar
Chao Liu committed
603
604
605
606
607
608
609
610
611
    device_implicit_gemm_convolution_1_chwn_csrk_khwn_padded(in_nchw_desc,
                                                             in_nchw,
                                                             wei_kcsr_desc,
                                                             wei_kcsr,
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
612
#endif
Chao Liu's avatar
Chao Liu committed
613

Chao Liu's avatar
Chao Liu committed
614
#if 0
615
616
    if(S == 3 && R == 3)
    {
617
        host_winograd_3x3_convolution(in_nchw, wei_kcsr, out_nkhw_host, lower_pads, upper_pads);
618
619
620
    }
    else
    {
621
        host_direct_convolution(in_nchw, wei_kcsr, out_nkhw_host, lower_pads, upper_pads);
622
    }
Chao Liu's avatar
Chao Liu committed
623
    check_error(out_nkhw_host, out_nkhw_device);
624
#endif
Chao Liu's avatar
Chao Liu committed
625

Chao Liu's avatar
Chao Liu committed
626
#if 0
Chao Liu's avatar
Chao Liu committed
627
628
629
630
    LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
    LogRange(std::cout << "wei_kcsr: ", wei_kcsr.mData, ",") << std::endl;
    LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
631
#endif
632
}