avgpool3d_bwd_common.hpp 6.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>

#include "ck/ck.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_avgpool_bwd.hpp"

template <typename TensorLayout>
std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
                                                ck::index_t C_,
                                                ck::index_t D,
                                                ck::index_t H,
                                                ck::index_t W,
                                                TensorLayout layout)
{
    using namespace ck::literals;
    (void)N_;
    if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
        return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
    else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
        return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
};

template <typename TensorLayout>
HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
                                              std::size_t C_,
                                              std::size_t D,
                                              std::size_t H,
                                              std::size_t W,
                                              TensorLayout layout)
{
    using namespace ck::literals;

    if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
    {
        return HostTensorDescriptor({N_, C_, D, H, W}, {C_ * D * H * W, D * H * W, H * W, W, 1_uz});
    }
    else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
    {
        return HostTensorDescriptor({N_, C_, D, H, W},
                                    {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
    }
};

template <typename DevicePoolBwdInstance,
          typename DOutDataType,
          typename DInDataType,
          typename DOutLayout,
          typename DInLayout>
bool pool3d_bwd_test(bool do_verification,
                     bool time_kernel,
                     ck::index_t N,
                     ck::index_t C,
                     ck::index_t Di,
                     ck::index_t Hi,
                     ck::index_t Wi,
                     std::vector<ck::index_t> window_lengths,
                     std::vector<ck::index_t> window_strides,
                     std::vector<ck::index_t> window_dilations,
                     std::vector<ck::index_t> dinput_left_pads,
                     std::vector<ck::index_t> dinput_right_pads)
{
    auto OutSpatialLength = [&](auto InSpatialLength, int index) {
        ck::index_t left_pad   = dinput_left_pads[index];
        ck::index_t right_pad  = dinput_right_pads[index];
        ck::index_t window_len = window_lengths[index];
        ck::index_t stride     = window_strides[index];
        ck::index_t dilation   = window_dilations[index];
        ck::index_t eff        = (window_len - 1) * dilation + 1;
        return (InSpatialLength + left_pad + right_pad - eff) / stride + 1;
    };

    ck::index_t Do = OutSpatialLength(Di, 0);
    ck::index_t Ho = OutSpatialLength(Hi, 1);
    ck::index_t Wo = OutSpatialLength(Wi, 2);

    Tensor<DOutDataType> dout(f_host_tensor_descriptor(N, C, Do, Ho, Wo, DOutLayout{}));
    Tensor<DInDataType> din_dev(f_host_tensor_descriptor(N, C, Di, Hi, Wi, DInLayout{}));
    Tensor<DInDataType> din_host(f_host_tensor_descriptor(N, C, Di, Hi, Wi, DInLayout{}));

    std::cout << "dout: " << dout.mDesc << std::endl;
    std::cout << "din_host: " << din_host.mDesc << std::endl;

    dout.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{0.0, 1.0});

    DeviceMem dout_device_buf(sizeof(DOutDataType) * dout.mDesc.GetElementSpaceSize());
    DeviceMem din_device_buf(sizeof(DInDataType) * din_dev.mDesc.GetElementSpaceSize());

    dout_device_buf.ToDevice(dout.mData.data());
    din_device_buf.SetZero();

    auto pool        = DevicePoolBwdInstance{};
    auto invoker_ptr = pool.MakeInvokerPointer();
    auto argument_ptr =
        pool.MakeArgumentPointer(static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
                                 static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
                                 {N, C, Do, Ho, Wo},
                                 {N, C, Di, Hi, Wi},
                                 f_tensor_strides_ncdhw(N, C, Do, Ho, Wo, DOutLayout{}),
                                 f_tensor_strides_ncdhw(N, C, Di, Hi, Wi, DInLayout{}),
                                 window_lengths,
                                 window_strides,
                                 window_dilations,
                                 dinput_left_pads,
                                 dinput_right_pads);

    if(!pool.IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
    std::cout << "Perf: " << ave_time << std::endl;

Bartlomiej Kocot's avatar
tmp  
Bartlomiej Kocot committed
123
ck::utils::CorrectnessValidator validator;
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    if(do_verification)
    {
        auto ref_pool =
            ck::tensor_operation::host::ReferenceAvgPoolBwd<3, DInDataType, DOutDataType>();

        auto ref_invoker = ref_pool.MakeInvoker();

        auto ref_argument = ref_pool.MakeArgument(din_host,
                                                  dout,
                                                  window_lengths,
                                                  window_strides,
                                                  window_dilations,
                                                  dinput_left_pads,
                                                  dinput_right_pads);

        ref_invoker.Run(ref_argument);

        din_device_buf.FromDevice(din_dev.mData.data());
Bartlomiej Kocot's avatar
tmp  
Bartlomiej Kocot committed
143
        validator.check_err(din_dev, din_host);
144
145
    }

Bartlomiej Kocot's avatar
tmp  
Bartlomiej Kocot committed
146
    return validator.is_success();
147
}