profile_batched_gemm_multi_d.cpp 8.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#include <cstdint>
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "profiler/profile_batched_gemm_impl.hpp"
#include "profiler_operation_registry.hpp"

#include "ck/library/tensor_operation_instance/gpu/batched_gemm_multi_d.hpp"

enum struct GemmMatrixLayout
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

enum struct GemmDataType
{
    F16_F16_F16,    // 0
    INT8_INT8_INT8, // 1
};

#define OP_NAME "batched_gemm_multi_d"
#define OP_DESC "Batched GEMM multi D"

int profile_batched_gemm_multi_d(int argc, char* argv[])
{
    if(argc != 18)
    {
        // clang-format off
        printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
        printf("arg2: data type (0: fp16; 1: int8)\n");
        printf("arg3: matrix layout (0: A[g, m, k] * B[g, k, n] = C[g, m, n];\n");
        printf("                     1: A[g, m, k] * B[g, n, k] = C[g, m, n];\n");
        printf("                     2: A[g, k, m] * B[g, k, n] = C[g, m, n];\n");
        printf("                     3: A[g, k, m] * B[g, n, k] = C[g, m, n])\n");
        printf("arg4: verification (0: no; 1: yes)\n");
        printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
        printf("arg6: print tensor value (0: no; 1: yes)\n");
        printf("arg7: time kernel (0=n0, 1=yes)\n");
        printf("arg8 to 17: M, N, K, StrideA, StrideB, StrideC, BatchStrideA, BatchStrideB, BatchStrideC, BatchCount\n");
        // clang-format on
        exit(1);
    }

    const auto data_type       = static_cast<GemmDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);

    const int M = std::stoi(argv[8]);
    const int N = std::stoi(argv[9]);
    const int K = std::stoi(argv[10]);

    const int StrideA = std::stoi(argv[11]);
    const int StrideB = std::stoi(argv[12]);
    const int StrideC = std::stoi(argv[13]);

    const int BatchStrideA = std::stoi(argv[14]);
    const int BatchStrideB = std::stoi(argv[15]);
    const int BatchStrideC = std::stoi(argv[16]);

    const int BatchCount = std::stoi(argv[17]);

73
74
    using F16 = ck::half_t;
#ifdef __int8__
75
    using INT8 = int8_t;
76
#endif
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    auto profile =
        [&](auto a_type, auto b_type, auto c_type, auto a_layout, auto b_layout, auto c_layout) {
            using ADataType  = decltype(a_type);
            using BDataType  = decltype(b_type);
            using CDataType  = decltype(c_type);
            using DsDataType = ck::Tuple<>;

            using ALayout  = decltype(a_layout);
            using BLayout  = decltype(b_layout);
            using CLayout  = decltype(c_layout);
            using DsLayout = ck::Tuple<>;

            const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
            const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
            const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? N : M;

            const int StrideA_ = (StrideA < 0) ? DefaultStrideA : StrideA;
            const int StrideB_ = (StrideB < 0) ? DefaultStrideB : StrideB;
            const int StrideC_ = (StrideC < 0) ? DefaultStrideC : StrideC;

            const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Row> ? M : K) * StrideA_;
            const int DefaultBatchStrideB = (ck::is_same_v<BLayout, Row> ? K : N) * StrideB_;
            const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Row> ? M : N) * StrideC_;

            const int BatchStrideA_ = (BatchStrideA < 0) ? DefaultBatchStrideA : BatchStrideA;
            const int BatchStrideB_ = (BatchStrideB < 0) ? DefaultBatchStrideB : BatchStrideB;
            const int BatchStrideC_ = (BatchStrideC < 0) ? DefaultBatchStrideC : BatchStrideC;

            using AElementOp = ck::tensor_operation::element_wise::PassThrough;
            using BElementOp = ck::tensor_operation::element_wise::PassThrough;
            using CElementOp = ck::tensor_operation::element_wise::PassThrough;

            using DeviceOp = ck::tensor_operation::device::DeviceBatchedGemmMultiD<ALayout,
                                                                                   BLayout,
                                                                                   DsLayout,
                                                                                   CLayout,
                                                                                   ADataType,
                                                                                   BDataType,
                                                                                   DsDataType,
                                                                                   CDataType,
                                                                                   AElementOp,
                                                                                   BElementOp,
                                                                                   CElementOp>;

            bool pass = ck::profiler::profile_batched_gemm_impl<ADataType,
                                                                BDataType,
                                                                CDataType,
                                                                ALayout,
                                                                BLayout,
                                                                CLayout,
                                                                AElementOp,
                                                                BElementOp,
                                                                CElementOp,
                                                                DeviceOp>(do_verification,
                                                                          init_method,
                                                                          do_log,
                                                                          time_kernel,
                                                                          M,
                                                                          N,
                                                                          K,
                                                                          BatchStrideA_,
                                                                          BatchStrideB_,
                                                                          BatchStrideC_,
                                                                          StrideA_,
                                                                          StrideB_,
                                                                          StrideC_,
                                                                          BatchCount);

            return pass ? 0 : 1;
        };

    if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
    {
        return profile(F16{}, F16{}, F16{}, Row{}, Row{}, Row{});
    }
    else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
    {
        return profile(F16{}, F16{}, F16{}, Row{}, Col{}, Row{});
    }
    else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
    {
        return profile(F16{}, F16{}, F16{}, Col{}, Row{}, Row{});
    }
    else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
    {
        return profile(F16{}, F16{}, F16{}, Col{}, Col{}, Row{});
    }
168
#ifdef __int8__
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_KN_MN)
    {
        return profile(INT8{}, INT8{}, INT8{}, Row{}, Row{}, Row{});
    }
    else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::MK_NK_MN)
    {
        return profile(INT8{}, INT8{}, INT8{}, Row{}, Col{}, Row{});
    }
    else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_KN_MN)
    {
        return profile(INT8{}, INT8{}, INT8{}, Col{}, Row{}, Row{});
    }
    else if(data_type == GemmDataType::INT8_INT8_INT8 && layout == GemmMatrixLayout::KM_NK_MN)
    {
        return profile(INT8{}, INT8{}, INT8{}, Col{}, Col{}, Row{});
    }
185
#endif
186
187
188
189
190
191
192
193
194
    else
    {
        std::cout << "this data_type & layout is not implemented" << std::endl;

        return 1;
    }
}

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_batched_gemm_multi_d);