device_gemm_splitk_xdl.hpp 24.1 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
#ifndef DEVICE_GEMM_SPLITK_XDL_HPP
#define DEVICE_GEMM_SPLITK_XDL_HPP

#include <iostream>
ltqin's avatar
ltqin committed
5
#include <sstream>
ltqin's avatar
ltqin committed
6
7
8
9
10
11
12
13
14
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4.hpp"

ltqin's avatar
ltqin committed
15
#ifndef CK_RUN_KERNEL_AND_TIME
ltqin's avatar
ltqin committed
16
#define CK_RUN_KERNEL_AND_TIME 1
ltqin's avatar
ltqin committed
17
18
#endif

ltqin's avatar
ltqin committed
19
20
21
22
23
24
25
26
27
28
29
namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
ltqin's avatar
ltqin committed
30
31
32
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
ltqin's avatar
ltqin committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadSliceLengths_K0_M_K1,
          typename ABlockTransferThreadClusterLengths_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
          typename BBlockTransferThreadSliceLengths_K0_N_K1,
          typename BBlockTransferThreadClusterLengths_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
          ck::index_t CThreadTransferSrcDstVectorDim,
          ck::index_t CThreadTransferDstScalarPerVector,
          bool ABlockLdsAddExtraM,
          bool BBlockLdsAddExtraN,
          ck::index_t DesiredGridSize>
ltqin's avatar
ltqin committed
61
62
struct DeviceGemmSplitKXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
ltqin's avatar
ltqin committed
63
64
65
66
67
68
69
70
71
72
73
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};
    static constexpr auto I3 = Number<3>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto
    MakeAGridDescriptor_KBatch_K0_M_K1(index_t M, index_t K, index_t StrideA, int KBatch, int KPad)
    {
ltqin's avatar
ltqin committed
74
        assert(KPad % (K1 * KBatch) == 0);
ltqin's avatar
ltqin committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        const index_t K0 = KPad / (K1 * KBatch);

        const auto a_grid_desc_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
            }
        }();

        const auto a_grid_desc_m_kpad = transform_tensor_descriptor(
            a_grid_desc_m_k,
            make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(M)),
            make_tuple(Sequence<0>{}, Sequence<1>{}),
            make_tuple(Sequence<0>{}, Sequence<1>{}));
        const auto a_grid_desc_kbatch_k0_m_k1 = transform_tensor_descriptor(
            a_grid_desc_m_kpad,
            make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
                       make_pass_through_transform(M)),
            make_tuple(Sequence<1>{}, Sequence<0>{}),
            make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));

        return a_grid_desc_kbatch_k0_m_k1;
    }

    static auto
    MakeBGridDescriptor_KBatch_K0_N_K1(index_t K, index_t N, index_t StrideB, int KBatch, int KPad)
    {
ltqin's avatar
ltqin committed
107
        assert(KPad % (K1 * KBatch) == 0);
ltqin's avatar
ltqin committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

        const index_t K0 = KPad / (K1 * KBatch);

        const auto b_grid_desc_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
            }
        }();

        const auto b_grid_desc_kpad_n = transform_tensor_descriptor(
            b_grid_desc_k_n,
            make_tuple(make_right_pad_transform(K, KPad - K), make_pass_through_transform(N)),
            make_tuple(Sequence<0>{}, Sequence<1>{}),
            make_tuple(Sequence<0>{}, Sequence<1>{}));

        const auto b_grid_desc_kbatch_k0_n_k1 = transform_tensor_descriptor(
            b_grid_desc_kpad_n,
            make_tuple(make_unmerge_transform(make_tuple(KBatch, K0, K1Number)),
                       make_pass_through_transform(N)),
            make_tuple(Sequence<0>{}, Sequence<1>{}),
            make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));

        return b_grid_desc_kbatch_k0_n_k1;
    }

    static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
    {
        if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
        {
            return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
        }
        else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
        {
            return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
        }
    }

    static auto GetKBatchAndKPad(index_t M, index_t N, index_t K)
    {
        const auto GridMN    = M * N / (MPerBlock * NPerBlock);
        const index_t KBatch = std::max(DesiredGridSize / GridMN, 1);
        const index_t K0     = math::integer_divide_ceil(K, K1 * K0PerBlock * KBatch) * K0PerBlock;
        const index_t KPad   = KBatch * K0 * K1;
        return std::make_tuple(KBatch, KPad);
    }

    using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_KBatch_K0_M_K1(1, 1, 1, 1, 1));
    using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_KBatch_K0_N_K1(1, 1, 1, 1, 1));
    using CGridDesc_M_N     = decltype(MakeCGridDescriptor_M_N(1, 1, 1));

    // GridwiseGemm
    using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
ltqin's avatar
ltqin committed
173
174
175
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
ltqin's avatar
ltqin committed
176
177
        MPerBlock,
        NPerBlock,
ltqin's avatar
ltqin committed
178
179
180
181
182
183
184
185
186
187
188
189
190
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
ltqin's avatar
ltqin committed
191
        ABlockLdsAddExtraM,
ltqin's avatar
ltqin committed
192
193
194
195
196
197
198
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
        false,                            // BThreadTransferSrcResetCoordinateAfterRun,
ltqin's avatar
ltqin committed
199
        BBlockLdsAddExtraN,
ltqin's avatar
ltqin committed
200
201
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
ltqin's avatar
ltqin committed
202
        CThreadTransferDstScalarPerVector>;
ltqin's avatar
ltqin committed
203
204
205
206
207
208
209
210
211
212
213

    // GridwiseGemm
    using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::AtomicAdd,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
ltqin's avatar
ltqin committed
214
215
216
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
ltqin's avatar
ltqin committed
217
218
        MPerBlock,
        NPerBlock,
ltqin's avatar
ltqin committed
219
220
221
222
223
224
225
226
227
228
229
230
231
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
ltqin's avatar
ltqin committed
232
        ABlockLdsAddExtraM,
ltqin's avatar
ltqin committed
233
234
235
236
237
238
239
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
        false,                            // BThreadTransferSrcResetCoordinateAfterRun,
ltqin's avatar
ltqin committed
240
        BBlockLdsAddExtraN,
ltqin's avatar
ltqin committed
241
242
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
ltqin's avatar
ltqin committed
243
        CThreadTransferDstScalarPerVector>;
ltqin's avatar
ltqin committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

    using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
        decltype(GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(CGridDesc_M_N{}));

    using Block2CTileMap =
        decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
ltqin's avatar
ltqin committed
264
265
266
267
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
ltqin's avatar
ltqin committed
268
269
270
271
272
273
274
275
276
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_kbatch_k0_m_k1_{},
              b_grid_desc_kbatch_k0_n_k1_{},
              c_grid_desc_m_n_{},
              c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
ltqin's avatar
ltqin committed
277
278
279
280
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
ltqin's avatar
ltqin committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        {
            int KBatch = 1, KPad = K;
            std::tie(KBatch, KPad) = DeviceGemmSplitKXdl::GetKBatchAndKPad(M, N, K);

            a_grid_desc_kbatch_k0_m_k1_ = DeviceGemmSplitKXdl::MakeAGridDescriptor_KBatch_K0_M_K1(
                M, K, StrideA, KBatch, KPad);
            b_grid_desc_kbatch_k0_n_k1_ = DeviceGemmSplitKXdl::MakeBGridDescriptor_KBatch_K0_N_K1(
                K, N, StrideB, KBatch, KPad);
            c_grid_desc_m_n_ = DeviceGemmSplitKXdl::MakeCGridDescriptor_M_N(M, N, StrideC);

            if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
                                           b_grid_desc_kbatch_k0_n_k1_,
                                           c_grid_desc_m_n_,
                                           M01_,
                                           N01_))
            {
                c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_grid_desc_m_n_);

                block_2_ctile_map_ =
                    GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, KBatch);
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
        BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
        CGridDesc_M_N c_grid_desc_m_n_;
        CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
        Block2CTileMap block_2_ctile_map_;
        index_t M01_;
        index_t N01_;
ltqin's avatar
ltqin committed
316
317
318
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
ltqin's avatar
ltqin committed
319
320
321
322
323
324
325
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceGemmSplitKXdl::Argument;

ltqin's avatar
ltqin committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        void ShowInfo(const Argument& arg)
        {
            std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
                      << arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
                      << arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
                      << arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << ", "
                      << arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I3) << "}" << std::endl;

            std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
                      << arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
                      << arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
                      << arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << ", "
                      << arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I3) << "}" << std::endl;

            std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
                      << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
        }
ltqin's avatar
ltqin committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        float Run(const Argument& arg, int nrepeat = 1)
        {
            const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0);

            if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
                                            arg.b_grid_desc_kbatch_k0_n_k1_,
                                            arg.c_grid_desc_m_n_,
                                            arg.M01_,
                                            arg.N01_))
            {
                throw std::runtime_error(
                    "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
            }

            const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch);

            const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);

            const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;

ltqin's avatar
ltqin committed
365
            const auto Run = [&](const auto& kernel) {
ltqin's avatar
ltqin committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
                if(nrepeat > 0)
                {
                    ShowInfo(arg);
                    ave_time = launch_and_time_kernel(kernel,
                                                      nrepeat,
                                                      dim3(grid_size),
                                                      dim3(BlockSize),
                                                      0,
                                                      arg.p_a_grid_,
                                                      arg.p_b_grid_,
                                                      arg.p_c_grid_,
                                                      arg.a_grid_desc_kbatch_k0_m_k1_,
                                                      arg.b_grid_desc_kbatch_k0_n_k1_,
                                                      arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                      arg.a_element_op_,
                                                      arg.b_element_op_,
                                                      arg.c_element_op_,
                                                      arg.block_2_ctile_map_);
                }

                if(kbatch > 1 || nrepeat <= 0)
ltqin's avatar
ltqin committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
                {
                    hipGetErrorString(
                        hipMemset(arg.p_c_grid_,
                                  0,
                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_.GetElementSpaceSize() *
                                      sizeof(CDataType)));

                    launch_kernel(kernel,
                                  dim3(grid_size),
                                  dim3(BlockSize),
                                  0,
                                  arg.p_a_grid_,
                                  arg.p_b_grid_,
                                  arg.p_c_grid_,
                                  arg.a_grid_desc_kbatch_k0_m_k1_,
                                  arg.b_grid_desc_kbatch_k0_n_k1_,
                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
                                  arg.a_element_op_,
                                  arg.b_element_op_,
                                  arg.c_element_op_,
                                  arg.block_2_ctile_map_);
                }
ltqin's avatar
ltqin committed
409
410
411
412
413
414
415
416
417
418
419
420
            };
            if(has_main_k0_block_loop)
            {
                if(kbatch == 1)
                {
                    const auto kernel = kernel_gemm_xdlops_v2r4<
                        GridwiseGemm,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmSplitKXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
ltqin's avatar
ltqin committed
421
422
423
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
ltqin's avatar
ltqin committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
                        remove_reference_t<DeviceGemmSplitKXdl::Block2CTileMap>,
                        true>;

                    Run(kernel);
                }
                else
                {
                    const auto kernel = kernel_gemm_xdlops_v2r4<
                        GridwiseGemmAtomicAdd,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmSplitKXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
ltqin's avatar
ltqin committed
438
439
440
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
ltqin's avatar
ltqin committed
441
442
443
444
445
                        remove_reference_t<DeviceGemmSplitKXdl::Block2CTileMap>,
                        true>;

                    Run(kernel);
                }
ltqin's avatar
ltqin committed
446
447
448
            }
            else
            {
ltqin's avatar
ltqin committed
449
450
451
452
453
454
455
456
457
                if(kbatch == 1)
                {
                    const auto kernel = kernel_gemm_xdlops_v2r4<
                        GridwiseGemm,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmSplitKXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
ltqin's avatar
ltqin committed
458
459
460
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
ltqin's avatar
ltqin committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
                        remove_reference_t<DeviceGemmSplitKXdl::Block2CTileMap>,
                        false>;

                    Run(kernel);
                }
                else
                {
                    const auto kernel = kernel_gemm_xdlops_v2r4<
                        GridwiseGemmAtomicAdd,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmSplitKXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmSplitKXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
ltqin's avatar
ltqin committed
475
476
477
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
ltqin's avatar
ltqin committed
478
479
480
481
482
                        remove_reference_t<DeviceGemmSplitKXdl::Block2CTileMap>,
                        false>;

                    Run(kernel);
                }
ltqin's avatar
ltqin committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
            }

            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
                                           arg.b_grid_desc_kbatch_k0_n_k1_,
                                           arg.c_grid_desc_m_n_,
                                           arg.M01_,
                                           arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
ltqin's avatar
ltqin committed
524
525
526
527
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
ltqin's avatar
ltqin committed
528
    {
ltqin's avatar
ltqin committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op};
ltqin's avatar
ltqin committed
543
544
545
546
547
548
549
550
551
552
553
554
555
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
ltqin's avatar
ltqin committed
556
557
558
559
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
                                                      CElementwiseOperation c_element_op) override
ltqin's avatar
ltqin committed
560
561
562
563
564
565
566
567
568
569
570
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
ltqin's avatar
ltqin committed
571
572
573
574
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);
ltqin's avatar
ltqin committed
575
576
577
578
579
580
581
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }
ltqin's avatar
ltqin committed
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

    // polymorphic
    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "DeviceGemmXdlSplitK"
            << "<"
            << BlockSize << ", "
            << MPerBlock << ", "
            << NPerBlock << ", "
            << K0PerBlock
            << ">";
        // clang-format on

        return str.str();
    }
ltqin's avatar
ltqin committed
600
601
602
603
604
605
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif