profile_groupnorm_impl.hpp 8.99 KB
Newer Older
rocking's avatar
rocking committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>

#include "ck/ck.hpp"
#include "profiler/include/data_type_enum.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {

using F16     = ck::half_t;
using F32     = float;
using Sigmoid = ck::tensor_operation::element_wise::Sigmoid;

void add_device_groupnorm_f16_instances(
    std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, Sigmoid, 5, 3>>&);

void add_device_groupnorm_f32_instances(
    std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, Sigmoid, 5, 3>>&);

} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

enum struct ElementwiseOpEnum
{
    ePassthrough = 0,
    eSigmoid     = 1
};

template <typename XDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename AccDataType,
          typename YDataType>
52
bool profile_groupnorm_impl(int do_verification,
rocking's avatar
rocking committed
53
54
55
56
57
58
59
60
61
62
63
                            int init_method,
                            bool do_log,
                            bool time_kernel,
                            std::vector<index_t> length,
                            ElementwiseOpEnum OutelementwiseOp)
{
    using F16     = ck::half_t;
    using F32     = float;
    using Sigmoid = ck::tensor_operation::element_wise::Sigmoid;

    if(length.size() != 5)
64
        return false;
rocking's avatar
rocking committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    index_t G = length[3];
    index_t C = length[4];

    std::vector<index_t> reduce_dim      = {1, 2, 4};
    std::vector<index_t> gammaBetaLength = {G, C};
    std::vector<index_t> gammaBetaStride = {0, 0, 0, C, 1};

    Tensor<XDataType> x(length);
    Tensor<GammaDataType> gamma(gammaBetaLength);
    Tensor<BetaDataType> beta(gammaBetaLength);
    Tensor<YDataType> y(length);
    Tensor<YDataType> host_y(length);

    switch(init_method)
    {
    case 0:
        x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
        gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
        beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
        break;
    case 1:
        x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
        gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
        beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
        break;
    default:
        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
    }

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    // add device normalization instances
    std::vector<tensor_operation::device::DeviceLayernormPtr<XDataType,
                                                             GammaDataType,
                                                             BetaDataType,
                                                             AccDataType,
                                                             YDataType,
                                                             Sigmoid,
                                                             5,
                                                             3>>
        instances;

    if constexpr(is_same<XDataType, F16>::value && is_same<GammaDataType, F16>::value &&
                 is_same<BetaDataType, F16>::value && is_same<YDataType, F16>::value &&
                 is_same<AccDataType, F32>::value)
    {
        if(OutelementwiseOp == ElementwiseOpEnum::eSigmoid)
            tensor_operation::device::instance::add_device_groupnorm_f16_instances(instances);
    }
    else if constexpr(is_same<XDataType, F32>::value && is_same<GammaDataType, F32>::value &&
                      is_same<BetaDataType, F32>::value && is_same<YDataType, F32>::value &&
                      is_same<AccDataType, F32>::value)
    {
        if(OutelementwiseOp == ElementwiseOpEnum::eSigmoid)
            tensor_operation::device::instance::add_device_groupnorm_f32_instances(instances);
    }

    if(instances.size() <= 0)
    {
        throw std::runtime_error("wrong! no device normalization instance found");
    }

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
        if(OutelementwiseOp == ElementwiseOpEnum::eSigmoid)
        {
            using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
                                                                                     GammaDataType,
                                                                                     BetaDataType,
                                                                                     YDataType,
                                                                                     AccDataType,
                                                                                     Sigmoid>;

            ReferenceInstance ref;
            auto ref_argument = ref.MakeArgument(x, gamma, beta, host_y, Sigmoid{}, length, 1e-6);
            auto ref_invoker  = ref.MakeInvoker();
            ref_invoker.Run(ref_argument);
        }
    }

159
160
    int num_kernel = 0;

rocking's avatar
rocking committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    for(auto& inst_ptr : instances)
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(
            length,
            std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
            gammaBetaStride,
            gammaBetaStride,
            std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
            reduce_dim,
            1e-6,
            x_dev.GetDeviceBuffer(),
            gamma_dev.GetDeviceBuffer(),
            beta_dev.GetDeviceBuffer(),
            y_dev.GetDeviceBuffer(),
            Sigmoid{});

177
        if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
rocking's avatar
rocking committed
178
        {
179
180
181
182
183
            ++num_kernel;
        }
        else
        {
            continue;
rocking's avatar
rocking committed
184
185
186
187
188
189
190
191
192
193
194
195
196
        }

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

        std::size_t num_bytes = x.mDesc.GetElementSize() * sizeof(XDataType) +
                                gamma.mDesc.GetElementSize() * sizeof(GammaDataType) +
                                beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
                                y.mDesc.GetElementSize() * sizeof(YDataType);

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

197
198
199
        if(time_kernel)
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
                      << inst_ptr->GetTypeString() << std::endl;
rocking's avatar
rocking committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
            y_dev.FromDevice(y.mData.data());

            bool pass =
                ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);

            if(do_log)
            {
                LogRangeAsType<float>(std::cout << "x  : ", x.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "host_y  : ", host_y.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "y  : ", y.mData, ",") << std::endl;
            }

            if(!pass)
            {
                std::cout << inst_ptr->GetTypeString() << " failed verification: ";
                LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
226
                return false;
rocking's avatar
rocking committed
227
228
229
            }
            else
            {
230
231
                if(time_kernel)
                    std::cout << "pass" << std::endl;
rocking's avatar
rocking committed
232
233
234
235
            }
        }
    }

236
237
238
239
240
241
242
243
244
245
246
247
248
249
    if(time_kernel)
    {
        LogRange(std::cout << "length = ", length, ",") << ", ";
        std::cout << "num_kernel = " << num_kernel << ", best perf = " << best_avg_time << " ms, "
                  << best_gb_per_sec << " GB/s, " << best_instance_name << std::endl;
    }

    if(num_kernel == 0)
    {
        std::cout << "Error: No kernel is tested" << std::endl;
        return false;
    }

    return true;
rocking's avatar
rocking committed
250
251
252
253
}

} // namespace profiler
} // namespace ck