tensor.hpp 7.75 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
#ifndef TENSOR_HPP
#define TENSOR_HPP
3

Chao Liu's avatar
Chao Liu committed
4
5
6
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
7
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
8
#include <utility>
Chao Liu's avatar
Chao Liu committed
9
10
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
11

Chao Liu's avatar
Chao Liu committed
12
template <class Range>
Chao Liu's avatar
Chao Liu committed
13
std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim)
Chao Liu's avatar
Chao Liu committed
14
15
{
    bool first = true;
Chao Liu's avatar
Chao Liu committed
16
    for(auto&& v : range)
Chao Liu's avatar
Chao Liu committed
17
18
19
20
21
    {
        if(first)
            first = false;
        else
            os << delim;
Chao Liu's avatar
Chao Liu committed
22
        os << v;
Chao Liu's avatar
Chao Liu committed
23
24
25
26
    }
    return os;
}

Chao Liu's avatar
Chao Liu committed
27
typedef enum {
Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
33
34
35
36
37
38
39
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
40
41
42
43
44
45
46
47
48
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
Chao Liu's avatar
Chao Liu committed
49
    constexpr std::size_t N = std::tuple_size<T>{};
Chao Liu's avatar
Chao Liu committed
50
51
52
53
54
55
56
57
58
59
60
61
62

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
Chao Liu's avatar
Chao Liu committed
63
    constexpr std::size_t N = std::tuple_size<T>{};
Chao Liu's avatar
Chao Liu committed
64
65
66
67

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
68
69
70
struct TensorDescriptor
{
    TensorDescriptor() = delete;
Chao Liu's avatar
Chao Liu committed
71
72
    TensorDescriptor(std::initializer_list<std::size_t> lens);
    TensorDescriptor(std::initializer_list<std::size_t> lens,
Chao Liu's avatar
Chao Liu committed
73
                     std::initializer_list<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
74
    TensorDescriptor(std::vector<std::size_t> lens, std::vector<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
75
76
77
78

    void CalculateStrides();

    template <class Range>
Chao Liu's avatar
Chao Liu committed
79
    TensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
Chao Liu's avatar
Chao Liu committed
80
81
82
83
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
84
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
85
86
    TensorDescriptor(const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
Chao Liu's avatar
Chao Liu committed
87
88
    {
    }
Chao Liu's avatar
Chao Liu committed
89

Chao Liu's avatar
Chao Liu committed
90
    std::size_t GetNumOfDimension() const;
Chao Liu's avatar
Chao Liu committed
91
92
93
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
94
95
96
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
97
    template <class... Is>
98
    std::size_t GetOffsetFromMultiIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
99
    {
Chao Liu's avatar
Chao Liu committed
100
        assert(sizeof...(Is) == this->GetNumOfDimension());
Chao Liu's avatar
Chao Liu committed
101
102
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
103
    }
Jehandad Khan's avatar
Jehandad Khan committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    void ReorderGivenNew2Old(std::vector<std::size_t> is)
    {
        assert(mLens.size() == is.size());
        assert(mStrides.size() == is.size());
        std::vector<std::size_t> newLens(mLens.size());
        std::vector<std::size_t> newStrides(mStrides.size());
        auto cnt = 0;
        for(auto& idx : is)
        {
            newLens[cnt] = mLens[idx];
            newStrides[cnt] = mStrides[idx];
            ++cnt;
        }
        mLens= newLens;
        mStrides = newStrides;
    }
Chao Liu's avatar
Chao Liu committed
120
121
122
123
124
125

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;
};

Chao Liu's avatar
Chao Liu committed
126
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
127
{
Chao Liu's avatar
Chao Liu committed
128
129
130
131
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
132

Chao Liu's avatar
Chao Liu committed
133
134
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
135

Chao Liu's avatar
Chao Liu committed
136
137
138
139
140
141
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
142
143
144
145
146

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
147
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
162
163
164
165
166
167
168
169
170
171
172
173
174
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
175
    void operator()(std::size_t num_thread) const
Chao Liu's avatar
Chao Liu committed
176
177
178
179
180
181
182
183
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
184
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
185
186
187

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
188
189
190
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
191
192
193
194
195
196
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
197
198
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
199
{
Chao Liu's avatar
Chao Liu committed
200
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
201
202
}

Chao Liu's avatar
Chao Liu committed
203
204
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
205
{
Chao Liu's avatar
Chao Liu committed
206
    template <class X>
Chao Liu's avatar
Chao Liu committed
207
    Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
208
209
    {
    }
Chao Liu's avatar
Chao Liu committed
210

Chao Liu's avatar
Chao Liu committed
211
    template <class X>
Chao Liu's avatar
Chao Liu committed
212
    Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
213
214
    {
    }
Chao Liu's avatar
Chao Liu committed
215

Chao Liu's avatar
Chao Liu committed
216
217
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
Chao Liu's avatar
Chao Liu committed
218
        : mDesc(lens, strides), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
219
220
    {
    }
Chao Liu's avatar
Chao Liu committed
221

Chao Liu's avatar
Chao Liu committed
222
223
    Tensor(const TensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}

Chao Liu's avatar
Chao Liu committed
224
225
226
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
Chao Liu's avatar
Chao Liu committed
227
        switch(mDesc.GetNumOfDimension())
Chao Liu's avatar
Chao Liu committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
267
        return mData[mDesc.GetOffsetFromMultiIndex(is...)];
Chao Liu's avatar
Chao Liu committed
268
269
270
271
272
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
273
        return mData[mDesc.GetOffsetFromMultiIndex(is...)];
Chao Liu's avatar
Chao Liu committed
274
275
276
277
278
279
280
281
282
283
284
285
286
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};
287
288

#endif