conv_fwd_driver_offline.cpp 21.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "conv_common.hpp"
#include "host_conv.hpp"
#include "device_tensor.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4r2_nhwc_kyxc_nhwk.hpp"
17
#include "device_dynamic_convolution_forward_implicit_gemm_v6r1_nchw_kcyx_nkhw.hpp"
Jing Zhang's avatar
Jing Zhang committed
18
#include "device_static_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
Jing Zhang's avatar
debug  
Jing Zhang committed
19
#include "device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw.hpp"
zjing14's avatar
zjing14 committed
20
21
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4r2_xdlops_nchw_kcyx_nkhw.hpp"
#include "device_dynamic_convolution_forward_implicit_gemm_v4r4r4_xdlops_nhwc_kyxc_nhwk.hpp"
22

Jing Zhang's avatar
Jing Zhang committed
23
24
#define USE_DYNAMIC_MODE 0
#define USE_CONV_FWD_V4R4_NCHW 0
Chao Liu's avatar
Chao Liu committed
25
#define USE_CONV_FWD_V4R4R2_NHWC 0
26
#define USE_CONV_FWD_V6R1_NCHW 0
Jing Zhang's avatar
Jing Zhang committed
27
#define USE_CONV_FWD_V5R1_NCHW 1
28
29
#define USE_CONV_FWD_V4R4R2_XDL_NCHW 0
#define USE_CONV_FWD_V4R4R4_XDL_NHWC 0
30
31
32

enum ConvForwardAlgo
{
zjing14's avatar
zjing14 committed
33
    V4R4NCHW,      // 0
34
35
36
37
38
    V4R4R2NHWC,    // 1
    V6R1NCHW,      // 2
    V5R1NCHW,      // 3
    V4R4R2XDLNCHW, // 4
    V4R4R4XDLNHWC  // 5
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
};

int main(int argc, char* argv[])
{
    using namespace ck;

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};
    constexpr auto I4 = Number<4>{};
    constexpr auto I5 = Number<5>{};
    constexpr auto I6 = Number<6>{};

#if USE_DYNAMIC_MODE
    // dynamic mode
    if(argc != 22)
    {
        printf("arg1 to 5: layout, algo, do_verification, init_method, do_log, nrepeat\n");
        printf("rest: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx\n");
        exit(1);
    }

    const ConvTensorLayout layout = static_cast<ConvTensorLayout>(atoi(argv[1]));
    const ConvForwardAlgo algo    = static_cast<ConvForwardAlgo>(atoi(argv[2]));
    const bool do_verification    = atoi(argv[3]);
    const int init_method         = atoi(argv[4]);
    const bool do_log             = atoi(argv[5]);
    const int nrepeat             = atoi(argv[6]);

    const index_t N  = atoi(argv[7]);
    const index_t K  = atoi(argv[8]);
    const index_t C  = atoi(argv[9]);
    const index_t Y  = atoi(argv[10]);
    const index_t X  = atoi(argv[11]);
    const index_t Hi = atoi(argv[12]);
    const index_t Wi = atoi(argv[13]);

    const index_t conv_stride_h   = atoi(argv[14]);
    const index_t conv_stride_w   = atoi(argv[15]);
    const index_t conv_dilation_h = atoi(argv[16]);
    const index_t conv_dilation_w = atoi(argv[17]);
    const index_t in_left_pad_h   = atoi(argv[18]);
    const index_t in_left_pad_w   = atoi(argv[19]);
    const index_t in_right_pad_h  = atoi(argv[20]);
    const index_t in_right_pad_w  = atoi(argv[21]);

    const index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const index_t XEff = (X - 1) * conv_dilation_w + 1;

    const index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
#else
    // static mode
    if(argc < 7)
    {
        printf("arg1 to 5: layout, algo, do_verification, init_method, do_log, nrepeat\n");
        exit(1);
    }

    const ConvTensorLayout layout = static_cast<ConvTensorLayout>(atoi(argv[1]));
    const ConvForwardAlgo algo    = static_cast<ConvForwardAlgo>(atoi(argv[2]));
    const bool do_verification    = atoi(argv[3]);
    const int init_method         = atoi(argv[4]);
    const bool do_log             = atoi(argv[5]);
    const int nrepeat             = atoi(argv[6]);

Jing Zhang's avatar
Jing Zhang committed
106
107
108
109
110
111
112
113
#if 1
    constexpr index_t N           = 1;
    constexpr index_t C           = 16;
    constexpr index_t Hi          = 1080;
    constexpr index_t Wi          = 1920;
    constexpr index_t K           = 16;
    constexpr index_t Y           = 3;
    constexpr index_t X           = 3;
Jing Zhang's avatar
Jing Zhang committed
114
115
116
117
#elif 0
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 540;
Jing Zhang's avatar
Jing Zhang committed
118
119
    constexpr index_t Wi = 960;
    constexpr index_t K  = 16;
zjing14's avatar
zjing14 committed
120
121
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Jing Zhang's avatar
Jing Zhang committed
122
123
124
125
126
127
128
129
#elif 0
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 480;
    constexpr index_t Wi = 270;
    constexpr index_t K  = 16;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Jing Zhang's avatar
Jing Zhang committed
130
#elif 0
Jing Zhang's avatar
Jing Zhang committed
131
132
133
134
135
136
137
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 240;
    constexpr index_t Wi = 135;
    constexpr index_t K  = 16;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Jing Zhang's avatar
Jing Zhang committed
138
#elif 0
Jing Zhang's avatar
Jing Zhang committed
139
140
141
142
143
144
145
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 1080;
    constexpr index_t Wi = 1920;
    constexpr index_t K  = 16;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
Jing Zhang's avatar
Jing Zhang committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#elif 0
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 540;
    constexpr index_t Wi = 960;
    constexpr index_t K  = 16;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
#elif 0
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 480;
    constexpr index_t Wi = 270;
    constexpr index_t K  = 16;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
#elif 0
    constexpr index_t N  = 1;
    constexpr index_t C  = 8;
    constexpr index_t Hi = 1080;
    constexpr index_t Wi = 1920;
    constexpr index_t K  = 16;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
#elif 0
    constexpr index_t N  = 1;
    constexpr index_t C  = 16;
    constexpr index_t Hi = 1080;
    constexpr index_t Wi = 1920;
    constexpr index_t K  = 4;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Jing Zhang's avatar
Jing Zhang committed
178
#endif
zjing14's avatar
zjing14 committed
179

Jing Zhang's avatar
Jing Zhang committed
180
181
    const index_t conv_stride_h   = 1;
    const index_t conv_stride_w   = 1;
182
183
    const index_t conv_dilation_h = 1;
    const index_t conv_dilation_w = 1;
zjing14's avatar
zjing14 committed
184
185
186
187
    const index_t in_left_pad_h   = 1;
    const index_t in_left_pad_w   = 1;
    const index_t in_right_pad_h  = 1;
    const index_t in_right_pad_w  = 1;
188
189
190
191
192
193
194
195

    const index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const index_t XEff = (X - 1) * conv_dilation_w + 1;

    const index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
#endif

Jing Zhang's avatar
Jing Zhang committed
196
#if 0
Chao Liu's avatar
Chao Liu committed
197
198
199
    using in_data_t  = float;
    using acc_data_t = float;
    using out_data_t = float;
zjing14's avatar
zjing14 committed
200
#elif 1
Chao Liu's avatar
Chao Liu committed
201
202
203
    using in_data_t  = half_t;
    using acc_data_t = float;
    using out_data_t = half_t;
204
#elif 1
Chao Liu's avatar
Chao Liu committed
205
206
207
    using in_data_t  = int8_t;
    using acc_data_t = int32_t;
    using out_data_t = int8_t;
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#endif

    std::vector<std::size_t> in_lengths_host(4), wei_lengths_host(4), out_lengths_host(4);

    switch(layout)
    {
    case ConvTensorLayout::NCHW:
        // NCHW
        in_lengths_host[0]  = static_cast<std::size_t>(N);
        in_lengths_host[1]  = static_cast<std::size_t>(C);
        in_lengths_host[2]  = static_cast<std::size_t>(Hi);
        in_lengths_host[3]  = static_cast<std::size_t>(Wi);
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(C);
        wei_lengths_host[2] = static_cast<std::size_t>(Y);
        wei_lengths_host[3] = static_cast<std::size_t>(X);
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(K);
        out_lengths_host[2] = static_cast<std::size_t>(Ho);
        out_lengths_host[3] = static_cast<std::size_t>(Wo);
        break;
    case ConvTensorLayout::NHWC:
        // NHWC
        in_lengths_host[0]  = static_cast<std::size_t>(N);
        in_lengths_host[1]  = static_cast<std::size_t>(Hi);
        in_lengths_host[2]  = static_cast<std::size_t>(Wi);
        in_lengths_host[3]  = static_cast<std::size_t>(C);
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(Y);
        wei_lengths_host[2] = static_cast<std::size_t>(X);
        wei_lengths_host[3] = static_cast<std::size_t>(C);
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(Ho);
        out_lengths_host[2] = static_cast<std::size_t>(Wo);
        out_lengths_host[3] = static_cast<std::size_t>(K);
        break;
    default: throw std::runtime_error("wrong! not implemented");
    }

    Tensor<in_data_t> in(in_lengths_host);
    Tensor<in_data_t> wei(wei_lengths_host);
    Tensor<out_data_t> out_host(out_lengths_host);
    Tensor<out_data_t> out_device(out_lengths_host);

    std::cout << "layout: " << layout << std::endl;
    ostream_HostTensorDescriptor(in.mDesc, std::cout << "in: ");
    ostream_HostTensorDescriptor(wei.mDesc, std::cout << "wei: ");
    ostream_HostTensorDescriptor(out_host.mDesc, std::cout << "out: ");
    print_array("InLeftPads", make_tuple(in_left_pad_h, in_left_pad_w));
    print_array("InRightPads", make_tuple(in_right_pad_h, in_right_pad_w));
    print_array("ConvStrides", make_tuple(conv_stride_h, conv_stride_w));
    print_array("ConvDilations", make_tuple(conv_dilation_h, conv_dilation_w));

    std::size_t num_thread = std::thread::hardware_concurrency();

263
    switch(init_method)
264
    {
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    case 0:
        // no initialization
        break;
    case 1:
        in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 2:
        in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 3:
        in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 4:
        in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 5:
        in.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
        break;
    default:
        in.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei.GenerateTensorValue(gen_wei, num_thread);
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    }

    auto f_make_for_device_nchw = [&]() {
#if USE_DYNAMIC_MODE
        const auto in_lengths_dev     = make_tuple(N, C, Hi, Wi);
        const auto wei_lengths_dev    = make_tuple(K, C, Y, X);
        const auto out_lengths_dev    = make_tuple(N, K, Ho, Wo);
        const auto conv_strides_dev   = make_tuple(conv_stride_h, conv_stride_w);
        const auto conv_dilations_dev = make_tuple(conv_dilation_h, conv_dilation_w);
        const auto in_left_pads_dev   = make_tuple(in_left_pad_h, in_left_pad_w);
        const auto in_right_pads_dev  = make_tuple(in_right_pad_h, in_right_pad_w);
#else
        const auto in_lengths_dev =
            make_tuple(Number<N>{}, Number<C>{}, Number<Hi>{}, Number<Wi>{});
        const auto wei_lengths_dev = make_tuple(Number<K>{}, Number<C>{}, Number<Y>{}, Number<X>{});
        const auto out_lengths_dev =
            make_tuple(Number<N>{}, Number<K>{}, Number<Ho>{}, Number<Wo>{});
        const auto conv_strides_dev = make_tuple(Number<conv_stride_h>{}, Number<conv_stride_w>{});
        const auto conv_dilations_dev =
            make_tuple(Number<conv_dilation_h>{}, Number<conv_dilation_w>{});
        const auto in_left_pads_dev = make_tuple(Number<in_left_pad_h>{}, Number<in_left_pad_w>{});
        const auto in_right_pads_dev =
            make_tuple(Number<in_right_pad_h>{}, Number<in_right_pad_w>{});
#endif

        return make_tuple(in_lengths_dev,
                          wei_lengths_dev,
                          out_lengths_dev,
                          conv_strides_dev,
                          conv_dilations_dev,
                          in_left_pads_dev,
                          in_right_pads_dev);
    };

    auto f_make_for_device_nhwc = [&]() {
#if USE_DYNAMIC_MODE
        const auto in_lengths_dev     = make_tuple(N, Hi, Wi, C);
        const auto wei_lengths_dev    = make_tuple(K, Y, X, C);
        const auto out_lengths_dev    = make_tuple(N, Ho, Wo, K);
        const auto conv_strides_dev   = make_tuple(conv_stride_h, conv_stride_w);
        const auto conv_dilations_dev = make_tuple(conv_dilation_h, conv_dilation_w);
        const auto in_left_pads_dev   = make_tuple(in_left_pad_h, in_left_pad_w);
        const auto in_right_pads_dev  = make_tuple(in_right_pad_h, in_right_pad_w);
#else
        const auto in_lengths_dev =
            make_tuple(Number<N>{}, Number<Hi>{}, Number<Wi>{}, Number<C>{});
        const auto wei_lengths_dev = make_tuple(Number<K>{}, Number<Y>{}, Number<X>{}, Number<C>{});
        const auto out_lengths_dev =
            make_tuple(Number<N>{}, Number<Ho>{}, Number<Wo>{}, Number<K>{});
        const auto conv_strides_dev = make_tuple(Number<conv_stride_h>{}, Number<conv_stride_w>{});
        const auto conv_dilations_dev =
            make_tuple(Number<conv_dilation_h>{}, Number<conv_dilation_w>{});
        const auto in_left_pads_dev = make_tuple(Number<in_left_pad_h>{}, Number<in_left_pad_w>{});
        const auto in_right_pads_dev =
            make_tuple(Number<in_right_pad_h>{}, Number<in_right_pad_w>{});
#endif

        return make_tuple(in_lengths_dev,
                          wei_lengths_dev,
                          out_lengths_dev,
                          conv_strides_dev,
                          conv_dilations_dev,
                          in_left_pads_dev,
                          in_right_pads_dev);
    };

#if USE_CONV_FWD_V4R4_NCHW
    if(algo == ConvForwardAlgo::V4R4NCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        device_dynamic_convolution_forward_implicit_gemm_v4r4_nchw_kcyx_nkhw<in_data_t,
                                                                             acc_data_t,
                                                                             out_data_t>(tmp[I0],
                                                                                         tmp[I1],
                                                                                         tmp[I2],
                                                                                         tmp[I3],
                                                                                         tmp[I4],
                                                                                         tmp[I5],
                                                                                         tmp[I6],
                                                                                         in,
                                                                                         wei,
                                                                                         out_device,
                                                                                         nrepeat);
    }
#endif

Chao Liu's avatar
Chao Liu committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#if USE_CONV_FWD_V4R4R2_NHWC
    if(algo == ConvForwardAlgo::V4R4R2NHWC)
    {
        if(layout != ConvTensorLayout::NHWC)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nhwc();

        device_dynamic_convolution_forward_implicit_gemm_v4r4r2_nhwc_kyxc_nhwk<in_data_t,
                                                                               acc_data_t,
                                                                               out_data_t>(
            tmp[I0],
            tmp[I1],
            tmp[I2],
            tmp[I3],
            tmp[I4],
            tmp[I5],
            tmp[I6],
            in,
            wei,
            out_device,
            nrepeat);
    }
#endif

414
415
#if USE_CONV_FWD_V6R1_NCHW
    if(algo == ConvForwardAlgo::V6R1NCHW)
416
417
418
419
420
421
422
423
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

424
        device_dynamic_convolution_forward_implicit_gemm_v6r1_nchw_kcyx_nkhw<in_data_t,
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
                                                                             acc_data_t,
                                                                             out_data_t>(tmp[I0],
                                                                                         tmp[I1],
                                                                                         tmp[I2],
                                                                                         tmp[I3],
                                                                                         tmp[I4],
                                                                                         tmp[I5],
                                                                                         tmp[I6],
                                                                                         in,
                                                                                         wei,
                                                                                         out_device,
                                                                                         nrepeat);
    }
#endif

Jing Zhang's avatar
Jing Zhang committed
440
441
    constexpr ck::index_t activ_type = 2;

442
443
444
445
446
447
448
449
450
451
#if USE_CONV_FWD_V5R1_NCHW
    if(algo == ConvForwardAlgo::V5R1NCHW)
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

Jing Zhang's avatar
debug  
Jing Zhang committed
452
453
454
455
456
#if 1
        device_static_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw
#else
        device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw
#endif
Jing Zhang's avatar
Jing Zhang committed
457
458
459
460
461
462
463
464
465
466
467
            <in_data_t, 8, 8, activ_type, acc_data_t, out_data_t>(tmp[I0],
                                                                  tmp[I1],
                                                                  tmp[I2],
                                                                  tmp[I3],
                                                                  tmp[I4],
                                                                  tmp[I5],
                                                                  tmp[I6],
                                                                  in,
                                                                  wei,
                                                                  out_device,
                                                                  nrepeat);
468
469
470
    }
#endif

471
472
#if USE_CONV_FWD_V4R4R2_XDL_NCHW
    if(algo == ConvForwardAlgo::V4R4R2XDLNCHW)
zjing14's avatar
zjing14 committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    {
        if(layout != ConvTensorLayout::NCHW)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nchw();

        device_dynamic_convolution_forward_implicit_gemm_v4r4r2_xdlops_nchw_kcyx_nkhw<in_data_t,
                                                                                      acc_data_t,
                                                                                      out_data_t>(
            tmp[I0],
            tmp[I1],
            tmp[I2],
            tmp[I3],
            tmp[I4],
            tmp[I5],
            tmp[I6],
            in,
            wei,
            out_device,
            nrepeat);
    }
#endif

#if USE_CONV_FWD_V4R4R4_XDL_NHWC
    if(algo == ConvForwardAlgo::V4R4R4XDLNHWC)
    {
        if(layout != ConvTensorLayout::NHWC)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nhwc();

        device_dynamic_convolution_forward_implicit_gemm_v4r4r4_xdlops_nhwc_kyxc_nhwk<in_data_t,
                                                                                      acc_data_t,
                                                                                      out_data_t>(
            tmp[I0],
            tmp[I1],
            tmp[I2],
            tmp[I3],
            tmp[I4],
            tmp[I5],
            tmp[I6],
            in,
            wei,
            out_device,
            nrepeat);
    }
#endif

525
526
    if(do_verification)
    {
Jing Zhang's avatar
Jing Zhang committed
527
528
529
530
531
532
533
        host_direct_convolution_activ(in,
                                      wei,
                                      out_host,
                                      make_tuple(conv_stride_h, conv_stride_w),
                                      make_tuple(conv_dilation_h, conv_dilation_w),
                                      make_tuple(in_left_pad_h, in_left_pad_w),
                                      make_tuple(in_right_pad_h, in_right_pad_w),
Jing Zhang's avatar
Jing Zhang committed
534
535
                                      activ_type,
                                      layout);
536
537
538

        check_error(out_host, out_device);

zjing14's avatar
zjing14 committed
539
#if 0
540
541
        if(do_log)
        {
Chao Liu's avatar
Chao Liu committed
542
543
544
545
            LogRangeAsType<float>(std::cout << "in : ", in.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "wei: ", wei.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
546
        }
zjing14's avatar
zjing14 committed
547
#endif
548
549
    }
}