profile_conv_bwd_weight.cpp 8.48 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
5
6
7
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
8
9

#include "profiler/include/profile_conv_bwd_weight_impl.hpp"
10

11
12
13
14
15
16
17
18
namespace {

enum struct ConvLayout
{
    NCHW_KYXC_NKHW, // 0
    NHWC_KYXC_NHWK, // 1
};

19
20
21
22
23
24
25
enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
};

26
static void print_helper_msg()
27
{
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    // clang-format-off
    std::cout << "arg1: tensor operation (conv_bww: ConvolutionBackwardWeight, Input * d_Output = "
                 "d_Weight)\n"
              << "arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"
              << "arg3: tensor layout (0: Input[N, C, Hi, Wi] * d_Output[N, K, Ho, Wo] = "
                 "d_Weight[K, C, Y, X] \n"
              << "                     1: Input[N, Hi, Wi, C] * d_Output[N, Ho, Wo, K] = "
                 "d_Weight[K, Y, X, C] )\n"
              << "arg4: verification (0: no, 1: yes)\n"
              << "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
              << "arg6: print tensor value (0: no; 1: yes)\n"
              << "arg7: time kernel (0: no, 1: yes)\n"
              << "arg8: N spatial dimensions\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << " SplitK\n"
              << std::endl;
    // clang-format-on
}
53

54
55
ck::tensor_operation::device::ConvParams
parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[])
56
{
57
58
59
    const ck::index_t N = std::stoi(argv[arg_idx++]);
    const ck::index_t K = std::stoi(argv[arg_idx++]);
    const ck::index_t C = std::stoi(argv[arg_idx++]);
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    std::vector<ck::index_t> filter_spatial_lengths(num_dim_spatial);
    std::vector<ck::index_t> input_spatial_lengths(num_dim_spatial);
    std::vector<ck::index_t> conv_filter_strides(num_dim_spatial);
    std::vector<ck::index_t> conv_filter_dilations(num_dim_spatial);
    std::vector<ck::index_t> input_left_pads(num_dim_spatial);
    std::vector<ck::index_t> input_right_pads(num_dim_spatial);

    for(int i = 0; i < num_dim_spatial; ++i)
    {
        filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }

    for(int i = 0; i < num_dim_spatial; ++i)
    {
        input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }

    for(int i = 0; i < num_dim_spatial; ++i)
    {
        conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
    }

    for(int i = 0; i < num_dim_spatial; ++i)
    {
        conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
    }

    for(int i = 0; i < num_dim_spatial; ++i)
    {
        input_left_pads[i] = std::stoi(argv[arg_idx++]);
    }

    for(int i = 0; i < num_dim_spatial; ++i)
    {
        input_right_pads[i] = std::stoi(argv[arg_idx++]);
    }

    return ck::tensor_operation::device::ConvParams{num_dim_spatial,
                                                    N,
                                                    K,
                                                    C,
                                                    filter_spatial_lengths,
                                                    input_spatial_lengths,
                                                    conv_filter_strides,
                                                    conv_filter_dilations,
                                                    input_left_pads,
                                                    input_right_pads};
}

} // namespace
111
112
113

int profile_conv_bwd_weight(int argc, char* argv[])
{
114
115
    // 8 for control, 1 for num_dim_spatial
    if(argc < 9)
116
    {
117
118
        print_helper_msg();
        return 1;
119
120
121
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
122
123
124
125
126
127
128
129
130
    const auto layout          = static_cast<ConvLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);
    const int num_dim_spatial  = std::stoi(argv[8]);

    // 8 for control, 1 for num_dim_spatial, 3 for N/K/C, and 6 * num_dim_spatial, 1 for split-K
    if(argc != 8 + 4 + 6 * num_dim_spatial + 1)
131
    {
132
133
        print_helper_msg();
        return 1;
134
    }
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    const auto params = parse_conv_params(num_dim_spatial, 9, argv);

    ck::index_t split_k = std::stoi(argv[8 + 4 + 6 * num_dim_spatial]);
    split_k             = std::max(1, split_k);

    using F32  = float;
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;

    using NWC   = ck::tensor_layout::convolution::NWC;
    using NHWC  = ck::tensor_layout::convolution::NHWC;
    using NDHWC = ck::tensor_layout::convolution::NDHWC;

    using KXC   = ck::tensor_layout::convolution::KXC;
    using KYXC  = ck::tensor_layout::convolution::KYXC;
    using KZYXC = ck::tensor_layout::convolution::KZYXC;

    using NWK   = ck::tensor_layout::convolution::NWK;
    using NHWK  = ck::tensor_layout::convolution::NHWK;
    using NDHWK = ck::tensor_layout::convolution::NDHWK;

    constexpr auto I1 = ck::Number<1>{};
    constexpr auto I2 = ck::Number<2>{};
    constexpr auto I3 = ck::Number<3>{};

    auto profile = [&](auto num_dim_spatial_tmp,
                       auto in_layout,
                       auto wei_layout,
                       auto out_layout,
                       auto in_type,
                       auto wei_type,
                       auto out_type) {
        constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;

        using InLayout  = decltype(in_layout);
        using WeiLayout = decltype(wei_layout);
        using OutLayout = decltype(out_layout);

        using InDataType  = decltype(in_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        bool pass = ck::profiler::profile_conv_bwd_weight_impl<NDimSpatial,
                                                               InLayout,
                                                               WeiLayout,
                                                               OutLayout,
                                                               InDataType,
                                                               WeiDataType,
                                                               OutDataType>(
            do_verification, init_method, do_log, time_kernel, params, split_k);

        return pass ? 0 : 1;
    };

    if(num_dim_spatial == 1 && layout == ConvLayout::NHWC_KYXC_NHWK)
191
    {
192
193
194
195
196
197
198
199
200
201
202
203
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I1, NWC{}, KXC{}, NWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I1, NWC{}, KXC{}, NWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I1, NWC{}, KXC{}, NWK{}, BF16{}, BF16{}, BF16{});
        }
204
    }
205
    else if(num_dim_spatial == 2 && layout == ConvLayout::NHWC_KYXC_NHWK)
206
    {
207
208
209
210
211
212
213
214
215
216
217
218
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I2, NHWC{}, KYXC{}, NHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I2, NHWC{}, KYXC{}, NHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I2, NHWC{}, KYXC{}, NHWK{}, BF16{}, BF16{}, BF16{});
        }
219
    }
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    else if(num_dim_spatial == 3 && layout == ConvLayout::NHWC_KYXC_NHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, BF16{}, BF16{}, BF16{});
        }
    }

    std::cout << "this data_type & layout is not implemented" << std::endl;
237

238
    return 1;
239
}