profile_conv_bwd_weight_impl.hpp 17.2 KB
Newer Older
1
#pragma once
JD's avatar
JD committed
2

Chao Liu's avatar
Chao Liu committed
3
4
5
6
7
8
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
9
#include "ck/library/utility/convolution_parameter.hpp"
Chao Liu's avatar
Chao Liu committed
10
11
12
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
14

15
16
17
18
using F16  = ck::half_t;
using F32  = float;
using BF16 = ck::bhalf_t;

19
20
21
namespace ck {
namespace tensor_operation {
namespace device {
22
namespace instance {
23

24
using DeviceConvndBwdWeightNoOpPtr =
25
26
27
28
    DeviceConvBwdWeightPtr<ck::tensor_operation::element_wise::PassThrough,
                           ck::tensor_operation::element_wise::PassThrough,
                           ck::tensor_operation::element_wise::PassThrough>;

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);

void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);

void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
    std::vector<DeviceConvndBwdWeightNoOpPtr>&);
49

50
} // namespace instance
51
52
53
54
55
56
57
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
using DeviceConvndBwdWeightNoOpPtr =
    ck::tensor_operation::device::instance::DeviceConvndBwdWeightNoOpPtr;

template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_weight_op_ptr(
    InDataType, WeiDataType, OutDataType, std::vector<DeviceConvndBwdWeightNoOpPtr>&, int)
{
    std::cout << "can not find device conv bwd weight" << std::endl;
    exit(1);
}

template <>
void get_device_conv_bwd_weight_op_ptr(
    F32, F32, F32, std::vector<DeviceConvndBwdWeightNoOpPtr>& op_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::instance::
            add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::instance::
            add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::instance::
            add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
        break;
    default: break;
    }
}

template <>
void get_device_conv_bwd_weight_op_ptr(
    F16, F16, F16, std::vector<DeviceConvndBwdWeightNoOpPtr>& op_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::instance::
            add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::instance::
            add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::instance::
            add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
        break;
    default: break;
    }
}

template <>
void get_device_conv_bwd_weight_op_ptr(
    BF16, BF16, BF16, std::vector<DeviceConvndBwdWeightNoOpPtr>& op_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::instance::
            add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(op_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::instance::
            add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::instance::
            add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(op_ptrs);
        break;
    default: break;
    }
}

template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
    for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
    {
        std::cout << "[";
        for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
        {
            std::cout << "[";
            for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
            {
                std::cout << "[";
                for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <ck::index_t NDimSpatial,
162
163
          typename InLayout,
          typename WeiLayout,
164
165
166
167
          typename OutLayout,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType>
168
169
170
bool profile_conv_bwd_weight_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
JD's avatar
JD committed
171
                                  bool time_kernel,
172
                                  const ck::tensor_operation::device::ConvParams& params,
173
174
                                  ck::index_t split_k)
{
175
176
177
178
179
180
181
182
183
184
    // make host tensor descritpor
    auto f_nhwc_host_tensor_descriptor =
        [](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
            std::vector<std::size_t> nhwc_lengths{static_cast<std::size_t>(n),
                                                  static_cast<std::size_t>(c)};
            nhwc_lengths.insert(
                nhwc_lengths.begin() + 1, spatial_lengths.begin(), spatial_lengths.end());

            return HostTensorDescriptor(nhwc_lengths);
        };
185

186
187
188
189
190
    auto f_nchw_host_tensor_descriptor =
        [](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
            std::vector<std::size_t> nchw_lengths{static_cast<std::size_t>(n),
                                                  static_cast<std::size_t>(c)};
            nchw_lengths.insert(nchw_lengths.end(), spatial_lengths.begin(), spatial_lengths.end());
191

192
            return HostTensorDescriptor(nchw_lengths);
193
194
        };

195
    HostTensorDescriptor in_desc, wei_desc, out_desc;
196

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    // FIXME: properly implement "make host descriptor" for different layout
    if constexpr(is_same_v<InLayout, ck::tensor_layout::convolution::NWC> ||
                 is_same_v<InLayout, ck::tensor_layout::convolution::NHWC> ||
                 is_same_v<InLayout, ck::tensor_layout::convolution::NDHWC>)
    {
        in_desc =
            f_nhwc_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_);
    }
    else if constexpr(is_same_v<InLayout, ck::tensor_layout::convolution::NCW> ||
                      is_same_v<InLayout, ck::tensor_layout::convolution::NCHW> ||
                      is_same_v<InLayout, ck::tensor_layout::convolution::NCDHW>)
    {
        in_desc =
            f_nchw_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_);
    }

    // FIXME: properly implement "make host descriptor" for different layout
    if constexpr(is_same_v<WeiLayout, ck::tensor_layout::convolution::KXC> ||
                 is_same_v<WeiLayout, ck::tensor_layout::convolution::KYXC> ||
                 is_same_v<WeiLayout, ck::tensor_layout::convolution::KZYXC>)
    {
        wei_desc =
            f_nhwc_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_);
    }
    else if constexpr(is_same_v<WeiLayout, ck::tensor_layout::convolution::KCX> ||
                      is_same_v<WeiLayout, ck::tensor_layout::convolution::KCYX> ||
                      is_same_v<WeiLayout, ck::tensor_layout::convolution::KCZYX>)
    {
        wei_desc =
            f_nchw_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_);
    }

    // FIXME: properly implement "make host descriptor" for different layout
    if constexpr(is_same_v<OutLayout, ck::tensor_layout::convolution::NWK> ||
                 is_same_v<OutLayout, ck::tensor_layout::convolution::NHWK> ||
                 is_same_v<OutLayout, ck::tensor_layout::convolution::NDHWK>)
    {
        out_desc =
            f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths());
    }
    else if constexpr(is_same_v<OutLayout, ck::tensor_layout::convolution::NKW> ||
                      is_same_v<OutLayout, ck::tensor_layout::convolution::NKHW> ||
                      is_same_v<OutLayout, ck::tensor_layout::convolution::NKDHW>)
    {
        out_desc =
            f_nchw_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths());
    }

    Tensor<InDataType> input(in_desc);
    Tensor<WeiDataType> weight_host_result(wei_desc);
    Tensor<WeiDataType> weight_device_result(wei_desc);
    Tensor<OutDataType> output(out_desc);

    std::cout << "input: " << input.mDesc << std::endl;
    std::cout << "weight: " << weight_host_result.mDesc << std::endl;
    std::cout << "output: " << output.mDesc << std::endl;
253
254
255
256
257

    switch(init_method)
    {
    case 0: break;
    case 1:
258
259
        input.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
        output.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
260
261
        break;
    default:
262
263
        input.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
        output.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
264
265
266
267
268
269
270
271
272
273
    }

    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

274
275
276
277
278
279
280
    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weight_device_result.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    out_device_buf.ToDevice(output.mData.data());

281
282
    if(do_verification)
    {
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
                                                                           InLayout,
                                                                           WeiLayout,
                                                                           OutLayout,
                                                                           InDataType,
                                                                           WeiDataType,
                                                                           OutDataType,
                                                                           InElementOp,
                                                                           WeiElementOp,
                                                                           OutElementOp>{};

        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(input,
                                                  weight_host_result,
                                                  output,
                                                  params.conv_filter_strides_,
                                                  params.conv_filter_dilations_,
                                                  params.input_left_pads_,
                                                  params.input_right_pads_,
303
304
305
306
307
308
309
310
                                                  in_element_op,
                                                  wei_element_op,
                                                  out_element_op);

        ref_invoker.Run(ref_argument);
    }

    // add device Conv instances
311
312
313
    std::vector<DeviceConvndBwdWeightNoOpPtr> op_ptrs;
    get_device_conv_bwd_weight_op_ptr(
        InDataType{}, WeiDataType{}, OutDataType{}, op_ptrs, NDimSpatial);
314

315
    if(op_ptrs.size() <= 0)
316
317
318
319
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

320
321
    std::string best_op_name;
    float best_avg_time   = 0;
322
323
324
325
326
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    bool pass = true;
JD's avatar
JD committed
327

328
    for(auto& op_ptr : op_ptrs)
329
    {
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        // using atomic, so need to reset input, setzero is done in invoker
        // if(split_k > 1)
        //{
        //    wei_device_buf.SetZero();
        //}

        auto argument_ptr =
            op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                        static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                        static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                        params.N_,
                                        params.K_,
                                        params.C_,
                                        params.input_spatial_lengths_,
                                        params.filter_spatial_lengths_,
                                        params.output_spatial_lengths_,
                                        params.conv_filter_strides_,
                                        params.conv_filter_dilations_,
                                        params.input_left_pads_,
                                        params.input_right_pads_,
                                        in_element_op,
                                        wei_element_op,
                                        out_element_op,
                                        split_k);

        if(!op_ptr->IsSupportedArgument(argument_ptr.get()))
356
        {
357
358
359
360
            std::cout << "wrong! device_conv with the specified compilation parameters does "
                         "not support this Conv problem"
                      << std::endl;
            continue;
361
        }
JD's avatar
JD committed
362

363
364
365
        auto invoker_ptr    = op_ptr->MakeInvokerPointer();
        std::string op_name = op_ptr->GetTypeString();
        float avg_time      = 0;
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        if(std::is_same<InDataType, ck::bhalf_t>::value && split_k > 1)
        {
            // alloc work space
            size_t bwd_weight_workspace_size = op_ptr->GetWorkSpaceSize(argument_ptr.get());
            if(bwd_weight_workspace_size <= 0)
            {
                printf("wrong work space size\n");
                exit(1);
            }
            DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
            wei_work_space_device_buf.SetZero();
            op_ptr->SetWorkSpacePointer(argument_ptr.get(),
                                        wei_work_space_device_buf.GetDeviceBuffer());
            avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
        }
        else
        {
            avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
        }
386

387
388
        std::size_t flop      = params.GetFlops();
        std::size_t num_btype = params.GetByte<InDataType, WeiDataType, OutDataType>();
389

390
391
        float tflops     = static_cast<float>(flop) / 1.E9 / avg_time;
        float gb_per_sec = num_btype / 1.E6 / avg_time;
392

393
394
        std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                  << " GB/s" << std::endl;
395

396
397
398
399
400
401
402
        if(tflops > best_tflops)
        {
            best_op_name    = op_name;
            best_tflops     = tflops;
            best_avg_time   = avg_time;
            best_gb_per_sec = gb_per_sec;
        }
403

404
405
406
        if(do_verification)
        {
            wei_device_buf.FromDevice(weight_device_result.mData.data());
407

408
409
            pass =
                pass & ck::utils::check_err(weight_device_result.mData, weight_host_result.mData);
410

411
            if(do_log)
412
            {
413
414
415
                std::cout << "in : ";
                show_data_nhwc_layout(output);
                std::cout << std::endl;
416

417
418
419
                std::cout << "wei: ";
                show_data_nhwc_layout(weight_host_result);
                std::cout << std::endl;
JD's avatar
JD committed
420

421
422
423
                std::cout << "out  : ";
                show_data_nhwc_layout(input);
                std::cout << std::endl;
424

425
426
427
                std::cout << "wei_device: ";
                show_data_nhwc_layout(weight_device_result);
                std::cout << std::endl;
428
429
430
431
            }
        }
    }

432
433
    std::cout << "Best Perf: " << best_avg_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
434
435
436
437
438
439

    return pass;
}

} // namespace profiler
} // namespace ck