space_filling_curve.cpp 6.58 KB
Newer Older
Jianfeng yan's avatar
Jianfeng yan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include <vector>
#include <iostream>
#include <numeric>

#include "tensor_descriptor_helper.hpp"
#include "tensor_space_filling_curve.hpp"

using namespace ck;

template <typename TensorDesc>
__global__ void test_iterator(const TensorDesc desc);

int main(int argc, char** argv)
{
    (void)argc;
    (void)argv;
    constexpr int N0 = 16;
    constexpr int N1 = 8;
    constexpr int N2 = 16;

    constexpr auto I0 = Number<0>{};
    // constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    // // constexpr auto I3 = Number<3>{};

#if 0
    std::vector<int> data(N0 * N1 * N2);
    std::iota(data.begin(), data.end(), 0);
    auto desc = make_naive_tensor_descriptor_packed(make_tuple(N0, N1, N2));

    {
        constexpr int nDim = decltype(desc)::GetNumOfVisibleDimension();
        using Index        = MultiIndex<nDim>;
        using TensorCoord  = decltype(make_tensor_coordinate(desc, Index{}));
        // TensorCoord coord  = make_tensor_coordinate(desc, make_tuple(1, 2, 3));

        // printf("%d\n", coord);
    }

    {
        printf("\n");
        auto desc0 = transform_tensor_descriptor(
            desc,
            make_tuple(make_pass_through_transform(N0), make_merge_transform(make_tuple(N1, N2))),
            make_tuple(Sequence<0>{}, Sequence<1, 2>{}),
            make_tuple(Sequence<0>{}, Sequence<1>{}));

        constexpr int nDim = decltype(desc0)::GetNumOfVisibleDimension();
        static_assert(nDim == 2);
        using Index        = MultiIndex<nDim>;
        using TensorCoord  = decltype(make_tensor_coordinate(desc0, Index{}));
        TensorCoord coord  = make_tensor_coordinate(desc0, make_tuple(1, 2));

        printf("coord.index = [%d, %d]\n", coord.GetIndex()[I0], coord.GetIndex()[I1]);
        // std::cout << "coord.index = " << coord.GetIndex() << std::endl;
        const auto step = make_tensor_coordinate_step(desc0, Index(1, 1));
        printf("step.index = [%d, %d]\n", step.GetIndexDiff()[I0], step.GetIndexDiff()[I1]);

        // move_tensor_coordinate(desc0, coord, Index(1, 1));
        move_tensor_coordinate(desc0, coord, step);
        printf("coord.index = [%d, %d]\n", coord.GetIndex()[I0], coord.GetIndex()[I1]);
    }

    {
        printf("\n");
        auto desc0 = transform_tensor_descriptor(
            desc,
            make_tuple(make_pass_through_transform(N0), make_slice_transform(N1, 0, N1-1), make_slice_transform(N2, 0, N2-1)),

            make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
            make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));

        constexpr int nDim = decltype(desc0)::GetNumOfVisibleDimension();
        static_assert(nDim == 3);
        using Index        = MultiIndex<nDim>;
        using TensorCoord  = decltype(make_tensor_coordinate(desc0, Index{}));
        TensorCoord coord  = make_tensor_coordinate(desc0, make_tuple(0, N1-2, N2-2));

        printf("coord.index = [%d, %d, %d]\n", coord.GetIndex()[I0], coord.GetIndex()[I1], coord.GetIndex()[I2]);
        // std::cout << "coord.index = " << coord.GetIndex() << std::endl;
        const auto step = make_tensor_coordinate_step(desc0, Index(0, 1, 1));
        printf("step.index = [%d, %d, %d]\n", step.GetIndexDiff()[I0], step.GetIndexDiff()[I1], step.GetIndexDiff()[I2]);

        // move_tensor_coordinate(desc0, coord, Index(1, 1));
        move_tensor_coordinate(desc0, coord, step);
        printf("coord.index = [%d, %d, %d]\n", coord.GetIndex()[I0], coord.GetIndex()[I1], coord.GetIndex()[I2]);
        printf("%d\n", to_multi_index(coord.GetIndex()) + Index{1, 1, 1});

    }

#endif

    {
        constexpr auto desc = make_naive_tensor_descriptor_packed(
            make_tuple(Number<N0>{}, Number<N1>{}, Number<N2>{}));
        printf("\n");
        auto desc0 = transform_tensor_descriptor(
            desc,
            make_tuple(make_slice_transform(Number<N0>{}, I0, Number<N0>{} / I2),
                       make_slice_transform(Number<N1>{}, I0, Number<N1>{} / I2),
                       make_slice_transform(Number<N2>{}, I0, Number<N2>{} / I2)),

            make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
            make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));

        test_iterator<<<1, 1>>>(desc0);
        hipDeviceSynchronize();
    }
    return 0;
}

template <typename TensorDesc>
__global__ void test_iterator(const TensorDesc desc)
{
    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};

    using SliceLengths     = Sequence<4, 3, 6>;
    using DimAccessOrder   = Sequence<2, 1, 0>;
    using ScalarsPerAccess = Sequence<2, 1, 2>;
    using SpaceFillingCurve =
        SpaceFillingCurve<decltype(desc), SliceLengths, DimAccessOrder, ScalarsPerAccess>;

    constexpr index_t num_accesses = SpaceFillingCurve::GetNumOfAccess();
    static_assert(num_accesses == reduce_on_sequence(SliceLengths{} / ScalarsPerAccess{}, math::multiplies{}, Number<1>{}));

    auto idx0 = SpaceFillingCurve::GetIndex(I0);

    printf("i = %d, idx = [%d, %d, %d]\n", 0, idx0[I0], idx0[I1], idx0[I2]);
    static_for<1, num_accesses, 1>{}([&](auto i) {
        constexpr auto idx1 = SpaceFillingCurve::GetIndex(i);
        const auto idx_diff = idx1 - idx0;
        index_t diff        = 0;
        static_for<0, TensorDesc::GetNumOfVisibleDimension(), 1>{}([&](auto idim) {
            diff += abs(idx_diff[idim]) / ScalarsPerAccess{}[idim];

        });
        printf(
            "i = %d, idx = [%d, %d, %d], diff = %d\n", i.value, idx1[I0], idx1[I1], idx1[I2], diff);
        idx0 = idx1;
    });
}

#if 0
/*
 * Naive tensor shape (16, 8, 16), desc shape (8, 4, 8)
 */
template <typename TensorDesc>
__global__ void test_iterator(const TensorDesc desc)
{
    __shared__ int sdata[1024 * 2];

    for(int ii = 0; ii < 1024 * 2; ++ii)
    {
        sdata[ii] = ii;
    }

    auto tensor_buf   = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(static_cast<int*>(sdata),
                                                                   desc.GetElementSpaceSize());
    using Iterator    = TensorIterator<int,
                                    decltype(desc),
                                    decltype(tensor_buf),
                                    Sequence<4, 3, 6>,
                                    Sequence<0, 1, 2>,
                                    Sequence<0, 0, 2>>;
    auto iter = Iterator(tensor_buf);

    for(int ii = 0; ii < 8*4*16 / (2); ++ii)
    // for(int ii = 0; ii < 4; ++ii)
    {
        const auto val = iter.Get(ii);
        // printf("sdata[%d] = %d, %d, %d, %d\n", ii, val[0], val[1], val[2], val[3]);
        printf("sdata[%d] = %d, %d\n", ii, val[0], val[1]);
        ++iter;
    }
}
#endif