256.cpp 5.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

#pragma once

#include "common.hpp"

#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = Col;
using BLayout = Row;
using CLayout = Row;

using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmDl<
            ck::half_t,
            ck::half_t,
            ck::half_t,
            float,
            ck::tensor_layout::gemm::ColumnMajor,
            ck::tensor_layout::gemm::RowMajor,
            ck::tensor_layout::gemm::RowMajor,
            ck::tensor_operation::element_wise::PassThrough,
            ck::tensor_operation::element_wise::PassThrough,
            ck::tensor_operation::element_wise::PassThrough,
            ck::tensor_operation::device::GemmSpecialization::Default,
            256,
            128,
            128,
            16,
            2,
            4,
            4,
            1,
            S<8, 2>,
            S<8, 2>,
            S<2, 1, 4, 2>,
            S<8, 1, 32, 1>,
            S<0, 3, 1, 2>,
            S<0, 3, 1, 2>,
            S<1, 1, 4, 1>,
            S<0, 3, 1, 2>,
            S<1, 1, 4, 2>,
            S<2, 1, 4, 2>,
            S<8, 1, 32, 1>,
            S<0, 3, 1, 2>,
            S<0, 3, 1, 2>,
            S<1, 1, 4, 1>,
            S<0, 3, 1, 2>,
            S<1, 1, 4, 2>,
            S<0, 1, 2, 3, 4, 5>,
            5,
            4>;

    using ReferenceGemmInstance = ck::tensor_operation::host::
        ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;


bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
    using namespace ck::literals;

    auto& [M, N, K, StrideA, StrideB, StrideC] = problem_size;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
            {
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
            }
            else
            {
                return HostTensorDescriptor({row, col}, {1_uz, stride});
            }
        };

    Tensor<ck::half_t> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ck::tensor_layout::gemm::ColumnMajor{}));
    Tensor<ck::half_t> b_k_n(f_host_tensor_descriptor(K, N, StrideB, ck::tensor_layout::gemm::RowMajor{}));

    switch(config.init_method)
    {
    case 0: break;
    case 1:
        ck::utils::FillUniformDistributionIntegerValue<ck::half_t>{-5.f, 5.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<ck::half_t>{-5.f, 5.f}(b_k_n);
        break;
    default:
        ck::utils::FillUniformDistribution<ck::half_t>{-1.f, 1.f}(a_m_k);
        ck::utils::FillUniformDistribution<ck::half_t>{-1.f, 1.f}(b_k_n);
    }

    Tensor<ck::half_t> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<ck::half_t> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    DeviceMem a_m_k_device_buf(sizeof(ck::half_t) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(ck::half_t) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(ck::half_t) * c_m_n_device_result.mDesc.GetElementSpaceSize());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());


    auto a_element_op = ck::tensor_operation::element_wise::PassThrough{};
    auto b_element_op = ck::tensor_operation::element_wise::PassThrough{};
    auto c_element_op = ck::tensor_operation::element_wise::PassThrough{};

    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(

        static_cast<ck::half_t*>(a_m_k_device_buf.GetDeviceBuffer()),
        static_cast<ck::half_t*>(b_k_n_device_buf.GetDeviceBuffer()),
        static_cast<ck::half_t*>(c_m_n_device_buf.GetDeviceBuffer()),
        M,
        N,
        K,
        StrideA,
        StrideB,
        StrideC,
        a_element_op,
        b_element_op,
        c_element_op);

    if(!gemm.IsSupportedArgument(argument))
    {
        std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return true;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});

    std::size_t flop = 2_uz * M * N * K;
    std::size_t num_btype =
        sizeof(ck::half_t) * M * K + sizeof(ck::half_t) * K * N + sizeof(ck::half_t) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    if(config.do_verification)
    {
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

        return ck::utils::check_err(c_m_n_device_result, c_m_n_host_result);
    }

    return true;
}

bool run_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}

int main(int argc, char* argv[]) { return !run_gemm_example(argc, argv); }