maxpool2d_bwd_common.hpp 10.5 KB
Newer Older
rocking's avatar
rocking committed
1
// SPDX-License-Identifier: MIT
rocking's avatar
rocking committed
2
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
rocking's avatar
rocking committed
3
4
5
6
7
8
9
10
11
12

#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
rocking's avatar
rocking committed
13
#include "ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp"
rocking's avatar
rocking committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp"

template <typename InDataType,
          typename OutDataType,
          typename IndexDataType,
          typename ComputeDataType,
          typename DInDataType,
          typename DOutDataType,
          typename InLayout,
          typename OutLayout,
rocking's avatar
rocking committed
32
          bool PropagateNan>
rocking's avatar
rocking committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
bool maxpool_bwd_test(bool do_verification,
                      bool time_kernel,
                      ck::index_t N,
                      ck::index_t C,
                      ck::index_t Y,
                      ck::index_t X,
                      ck::index_t Hi,
                      ck::index_t Wi,
                      ck::index_t window_stride_h,
                      ck::index_t window_stride_w,
                      ck::index_t in_left_pad_h,
                      ck::index_t in_left_pad_w,
                      ck::index_t in_right_pad_h,
                      ck::index_t in_right_pad_w)
{
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    using DevicePoolFwdInstance =
        ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
            InDataType,      // InDataType
            OutDataType,     // OutDataType
            IndexDataType,   // IndexDataType
            ComputeDataType, // ComputeDataType
rocking's avatar
rocking committed
56
            ck::ReduceTensorOp::MAX,
rocking's avatar
rocking committed
57
58
59
60
61
62
63
64
65
            true, // OutputIndex
            64,   // BlockSize
            64,   // ReduceMThreadClusterSize
            1,    // ReduceKThreadClusterSize
            4,    // ReduceMThreadSliceSize
            1,    // ReduceKThreadSliceSize
            1>;   // InSrcOutDstVectorSize

    using DeviceMaxPoolBwdInstance = ck::tensor_operation::device::
rocking's avatar
rocking committed
66
        DeviceIndexPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>;
rocking's avatar
rocking committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;

    const std::vector<ck::index_t> window_spatial_lengths{Y, X};
    const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w};
    const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
    const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};

    // tensor layout
    auto f_host_tensor_descriptor =
        [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
            using namespace ck::literals;

            if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value)
            {
                return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, H * W, W, 1_uz});
            }
            else if constexpr(ck::is_same<decltype(layout),
                                          ck::tensor_layout::convolution::NHWC>::value)
            {
                return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
            }
        };

    // in
    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));

    // out
    Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));

    // indices
    Tensor<IndexDataType> indices_n_c_ho_wo_device(
        f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));
    Tensor<IndexDataType> indices_n_c_ho_wo_host(
        f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));

    // dout
    Tensor<DOutDataType> dout_n_c_ho_wo(f_host_tensor_descriptor(N, C, Ho, Wo, OutLayout{}));

    // din
    Tensor<DInDataType> din_n_c_hi_wi_host(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<DInDataType> din_n_c_hi_wi_device(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;
    std::cout << "indices_n_c_ho_wo: " << indices_n_c_ho_wo_host.mDesc << std::endl;
    std::cout << "dout_n_c_ho_wo: " << dout_n_c_ho_wo.mDesc << std::endl;
    std::cout << "din_n_c_hi_wi: " << din_n_c_hi_wi_host.mDesc << std::endl;

    in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
    dout_n_c_ho_wo.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{-1.0, 1.0});

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
    DeviceMem out_device_buf(sizeof(OutDataType) *
                             out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
    DeviceMem indices_device_buf(sizeof(IndexDataType) *
                                 indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
    DeviceMem dout_device_buf(sizeof(DOutDataType) * dout_n_c_ho_wo.mDesc.GetElementSpaceSize());
    DeviceMem din_device_buf(sizeof(DInDataType) *
                             din_n_c_hi_wi_device.mDesc.GetElementSpaceSize());

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    dout_device_buf.ToDevice(dout_n_c_ho_wo.mData.data());
    din_device_buf.SetZero();

    auto pool_fwd              = DevicePoolFwdInstance{};
    auto pool_fwd_invoker_ptr  = pool_fwd.MakeInvokerPointer();
    auto pool_fwd_argument_ptr = pool_fwd.MakeArgumentPointer(
        static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
        static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
        static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
        {N, C, Hi, Wi},
rocking's avatar
rocking committed
141
        window_spatial_lengths,
rocking's avatar
rocking committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        {N, C, Ho, Wo},
        {C * Hi * Wi, 1, Wi * C, C},
        {C * Ho * Wo, 1, Wo * C, C},
        {C * Ho * Wo, 1, Wo * C, C},
        window_strides,
        input_left_pads,
        input_right_pads,
        {2, 3});

    if(!pool_fwd.IsSupportedArgument(pool_fwd_argument_ptr.get()))
    {
        throw std::runtime_error("wrong! pool_fwd with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time_fwd =
        pool_fwd_invoker_ptr->Run(pool_fwd_argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    auto pool_bwd              = DeviceMaxPoolBwdInstance{};
    auto pool_bwd_invoker_ptr  = pool_bwd.MakeInvokerPointer();
    auto pool_bwd_argument_ptr = pool_bwd.MakeArgumentPointer(
        static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
        static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
        static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
        dout_n_c_ho_wo.mDesc.GetElementSpaceSize(),
        din_n_c_hi_wi_device.mDesc.GetElementSpaceSize(),
rocking's avatar
rocking committed
168
169
        window_spatial_lengths,
        window_strides);
rocking's avatar
rocking committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

    if(!pool_bwd.IsSupportedArgument(pool_bwd_argument_ptr.get()))
    {
        throw std::runtime_error("wrong! pool_bwd with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time_bwd =
        pool_bwd_invoker_ptr->Run(pool_bwd_argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    std::cout << "Pool fwd perf: " << ave_time_fwd << " ms" << std::endl;
    std::cout << "Pool bwd perf: " << ave_time_bwd << " ms" << std::endl;

    bool pass = true;

    if(do_verification)
    {
        using ReferencePoolingFwdInstance =
            ck::tensor_operation::host::ReferencePoolingFwd<4,
                                                            2,
                                                            InDataType,
                                                            OutDataType,
                                                            ComputeDataType,
                                                            IndexDataType,
rocking's avatar
rocking committed
194
                                                            ck::ReduceTensorOp::MAX,
rocking's avatar
rocking committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                                                            PropagateNan,
                                                            true>;

        auto ref_pooling_fwd          = ReferencePoolingFwdInstance{};
        auto ref_pooling_fwd_invoker  = ref_pooling_fwd.MakeInvoker();
        auto ref_pooling_fwd_argument = ref_pooling_fwd.MakeArgument(in_n_c_hi_wi,
                                                                     out_n_c_ho_wo_host,
                                                                     indices_n_c_ho_wo_host,
                                                                     window_spatial_lengths,
                                                                     window_strides,
                                                                     input_left_pads,
                                                                     input_right_pads);

        ref_pooling_fwd_invoker.Run(ref_pooling_fwd_argument);

        using ReferencePoolingBwdInstance = ck::tensor_operation::host::
            ReferenceMaxPoolBwd<DOutDataType, IndexDataType, DInDataType, PassThrough>;

        auto ref_pooling_bwd          = ReferencePoolingBwdInstance{};
        auto ref_pooling_bwd_invoker  = ref_pooling_bwd.MakeInvoker();
        auto ref_pooling_bwd_argument = ref_pooling_bwd.MakeArgument(
            dout_n_c_ho_wo, indices_n_c_ho_wo_host, din_n_c_hi_wi_host, PassThrough{});

        ref_pooling_bwd_invoker.Run(ref_pooling_bwd_argument);

        out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
        indices_device_buf.FromDevice(indices_n_c_ho_wo_device.mData.data());
        din_device_buf.FromDevice(din_n_c_hi_wi_device.mData.data());

        pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host);
        pass = pass && ck::utils::check_err(indices_n_c_ho_wo_device, indices_n_c_ho_wo_host);
        pass = pass && ck::utils::check_err(din_n_c_hi_wi_device, din_n_c_hi_wi_host);
    }

    return (pass);
};