"vscode:/vscode.git/clone" did not exist on "7c94df4bcf55b302f4db075529a6d5d7ecd8ce52"
profile_conv_bwd_data_impl.hpp 16.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#pragma once
Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

11
12
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
Chao Liu's avatar
Chao Liu committed
13
14
15
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
17
18
19

using F16  = ck::half_t;
using F32  = float;
20
using BF16 = ck::bhalf_t;
21
using INT8 = int8_t;
Chao Liu's avatar
Chao Liu committed
22

23
24
25
namespace ck {
namespace tensor_operation {
namespace device {
26
namespace instance {
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

using DeviceConvBwdDataNoOpPtr =
    DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
58
} // namespace instance
59
60
61
62
63
64
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {
65
using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::instance::DeviceConvBwdDataNoOpPtr;
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_data_op_ptr(
    InDataType, WeiDataType, OutDataType, std::vector<DeviceConvBwdDataNoOpPtr>&, int)
{
    std::cout << "can not find device conv bwd data" << std::endl;
    exit(1);
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F32, F32, F32, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
81
        ck::tensor_operation::device::instance::
82
83
84
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
        break;
    case 2:
85
        ck::tensor_operation::device::instance::
86
87
88
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        break;
    case 3:
89
        ck::tensor_operation::device::instance::
90
91
92
93
94
95
96
97
98
99
100
101
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F16, F16, F16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
102
        ck::tensor_operation::device::instance::
103
104
105
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
        break;
    case 2:
106
        ck::tensor_operation::device::instance::
107
108
109
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        break;
    case 3:
110
        ck::tensor_operation::device::instance::
111
112
113
114
115
116
117
118
119
120
121
122
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    BF16, BF16, BF16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
123
        ck::tensor_operation::device::instance::
124
125
126
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
        break;
    case 2:
127
        ck::tensor_operation::device::instance::
128
129
130
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        break;
    case 3:
131
        ck::tensor_operation::device::instance::
132
133
134
135
136
137
138
139
140
141
142
143
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    INT8, INT8, INT8, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
144
        ck::tensor_operation::device::instance::
145
146
147
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
        break;
    case 2:
148
        ck::tensor_operation::device::instance::
149
150
151
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        break;
    case 3:
152
        ck::tensor_operation::device::instance::
153
154
155
156
157
158
159
160
161
162
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
        break;
    default: break;
    }
}

template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
163
    for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
164
165
    {
        std::cout << "[";
166
        for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
167
168
        {
            std::cout << "[";
169
            for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
170
171
            {
                std::cout << "[";
172
                for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <int NDimSpatial,
          typename InLayout,
          typename WeiLayout,
188
189
190
191
192
193
194
195
196
          typename OutLayout,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType>
bool profile_conv_bwd_data_impl(int do_verification,
                                int init_method,
                                bool do_log,
                                bool time_kernel,
                                const ck::tensor_operation::device::ConvParams& params)
197
198
199
200
201
202
203
204
205
{
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    // make host tensor descritpor
    auto f_nhwc_host_tensor_descriptor =
        [](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
            std::vector<std::size_t> nhwc_lengths{static_cast<std::size_t>(n),
                                                  static_cast<std::size_t>(c)};
            nhwc_lengths.insert(
                nhwc_lengths.begin() + 1, spatial_lengths.begin(), spatial_lengths.end());

            return HostTensorDescriptor(nhwc_lengths);
        };

    auto f_nchw_host_tensor_descriptor =
        [](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
            std::vector<std::size_t> nchw_lengths{static_cast<std::size_t>(n),
                                                  static_cast<std::size_t>(c)};
            nchw_lengths.insert(nchw_lengths.end(), spatial_lengths.begin(), spatial_lengths.end());

            return HostTensorDescriptor(nchw_lengths);
        };

    HostTensorDescriptor in_desc, wei_desc, out_desc;

    // FIXME: properly implement "make host descriptor" for different layout
    if constexpr(is_same_v<InLayout, ck::tensor_layout::convolution::NWC> ||
                 is_same_v<InLayout, ck::tensor_layout::convolution::NHWC> ||
                 is_same_v<InLayout, ck::tensor_layout::convolution::NDHWC>)
    {
        in_desc =
            f_nhwc_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_);
    }
    else if constexpr(is_same_v<InLayout, ck::tensor_layout::convolution::NCW> ||
                      is_same_v<InLayout, ck::tensor_layout::convolution::NCHW> ||
                      is_same_v<InLayout, ck::tensor_layout::convolution::NCDHW>)
    {
        in_desc =
            f_nchw_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_);
    }

    // FIXME: properly implement "make host descriptor" for different layout
    if constexpr(is_same_v<WeiLayout, ck::tensor_layout::convolution::KXC> ||
                 is_same_v<WeiLayout, ck::tensor_layout::convolution::KYXC> ||
                 is_same_v<WeiLayout, ck::tensor_layout::convolution::KZYXC>)
    {
        wei_desc =
            f_nhwc_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_);
    }
    else if constexpr(is_same_v<WeiLayout, ck::tensor_layout::convolution::KCX> ||
                      is_same_v<WeiLayout, ck::tensor_layout::convolution::KCYX> ||
                      is_same_v<WeiLayout, ck::tensor_layout::convolution::KCZYX>)
    {
        wei_desc =
            f_nchw_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_);
    }

    // FIXME: properly implement "make host descriptor" for different layout
    if constexpr(is_same_v<OutLayout, ck::tensor_layout::convolution::NWK> ||
                 is_same_v<OutLayout, ck::tensor_layout::convolution::NHWK> ||
                 is_same_v<OutLayout, ck::tensor_layout::convolution::NDHWK>)
    {
        out_desc =
            f_nhwc_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths());
    }
    else if constexpr(is_same_v<OutLayout, ck::tensor_layout::convolution::NKW> ||
                      is_same_v<OutLayout, ck::tensor_layout::convolution::NKHW> ||
                      is_same_v<OutLayout, ck::tensor_layout::convolution::NKDHW>)
    {
        out_desc =
            f_nchw_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths());
    }

    Tensor<InDataType> input_host_result(in_desc);
    Tensor<InDataType> input_device_result(in_desc);
    Tensor<WeiDataType> weight(wei_desc);
    Tensor<OutDataType> output(out_desc);
280

ltqin's avatar
ltqin committed
281
    std::cout << "input: " << input_host_result.mDesc << std::endl;
282
    std::cout << "weight: " << weight.mDesc << std::endl;
ltqin's avatar
ltqin committed
283
    std::cout << "output: " << output.mDesc << std::endl;
284
285
286
287
288

    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
289
        output.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
290
        weight.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
291
292
        break;
    default:
ltqin's avatar
ltqin committed
293
        output.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
294
        weight.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
295
296
    }

ltqin's avatar
ltqin committed
297
    DeviceMem in_device_buf(sizeof(InDataType) * input_device_result.mDesc.GetElementSpace());
298
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weight.mDesc.GetElementSpace());
ltqin's avatar
ltqin committed
299
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
300

ltqin's avatar
ltqin committed
301
    out_device_buf.ToDevice(output.mData.data());
302
    wei_device_buf.ToDevice(weight.mData.data());
303
304
305

    if(do_verification)
    {
306
307
308
309
310
        auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<NDimSpatial,
                                                                         InLayout,
                                                                         WeiLayout,
                                                                         OutLayout,
                                                                         InDataType,
ltqin's avatar
ltqin committed
311
312
313
314
                                                                         WeiDataType,
                                                                         OutDataType,
                                                                         InElementOp,
                                                                         WeiElementOp,
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
                                                                         OutElementOp>{};

        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(input_host_result,
                                                  weight,
                                                  output,
                                                  params.conv_filter_strides_,
                                                  params.conv_filter_dilations_,
                                                  params.input_left_pads_,
                                                  params.input_right_pads_,
                                                  InElementOp{},
                                                  WeiElementOp{},
                                                  OutElementOp{});
        ref_invoker.Run(ref_argument);
330
331
332
333
334
335
336
337
338
339
340
341
    }

    // add device Conv instances
    std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
    get_device_conv_bwd_data_op_ptr(
        InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);

    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

342
343
    std::string best_op_name;
    float best_avg_time   = 0;
344
345
346
347
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
348
349
    bool pass = true;

350
351
352
353
354
355
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
356
357
358
359
360
361
362
363
364
365
            params.N_,
            params.K_,
            params.C_,
            params.input_spatial_lengths_,
            params.filter_spatial_lengths_,
            params.output_spatial_lengths_,
            params.conv_filter_strides_,
            params.conv_filter_dilations_,
            params.input_left_pads_,
            params.input_right_pads_,
366
367
368
369
370
371
372
373
            in_element_op,
            wei_element_op,
            out_element_op);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
374
375
376
377
            // reset input to zero
            in_device_buf.SetZero();

            std::string op_name = conv_ptr->GetTypeString();
378

379
            float avg_time =
JD's avatar
JD committed
380
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
381

382
383
            std::size_t flop      = params.GetFlops();
            std::size_t num_btype = params.GetByte<InDataType, WeiDataType, OutDataType>();
384

385
386
            float tflops     = static_cast<float>(flop) / 1.E9 / avg_time;
            float gb_per_sec = num_btype / 1.E6 / avg_time;
387

388
            std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
389
390
391
392
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
393
                best_op_name    = op_name;
394
                best_tflops     = tflops;
395
                best_avg_time   = avg_time;
396
397
398
399
400
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
ltqin's avatar
ltqin committed
401
                in_device_buf.FromDevice(input_device_result.mData.data());
402

403
404
                pass =
                    pass & ck::utils::check_err(input_device_result.mData, input_host_result.mData);
405
406
407
408

                if(do_log)
                {
                    std::cout << "in : ";
ltqin's avatar
ltqin committed
409
                    show_data_nhwc_layout(output);
410
411
412
                    std::cout << std::endl;

                    std::cout << "wei: ";
413
                    show_data_nhwc_layout(weight);
414
415
416
                    std::cout << std::endl;

                    std::cout << "out_host  : ";
ltqin's avatar
ltqin committed
417
                    show_data_nhwc_layout(input_host_result);
418
419
420
                    std::cout << std::endl;

                    std::cout << "out_device: ";
ltqin's avatar
ltqin committed
421
                    show_data_nhwc_layout(input_device_result);
422
423
424
425
426
427
                    std::cout << std::endl;
                }
            }
        }
    }

428
429
430
431
    std::cout << "Best Perf: " << best_avg_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;

    return pass;
432
433
434
435
}

} // namespace profiler
} // namespace ck