"README_origin.md" did not exist on "27e1247793c97b5c8fb49572851a7fa77149beaa"
profile_grouped_gemm_fastgelu.cpp 6.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "profiler/profile_grouped_gemm_fastgelu_impl.hpp"
#include "profiler_operation_registry.hpp"

enum struct GemmMatrixLayout
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
    MK_KN_NM, // 4
    MK_NK_NM, // 5
    KM_KN_NM, // 6
    KM_NK_NM, // 7
};

enum struct GemmDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

#define OP_NAME "grouped_gemm_fastgelu"
#define OP_DESC "Grouped GEMM+FastGelu"

namespace {

std::vector<int> argToIntArray(char* input)
{
    std::vector<int> out;

    std::istringstream in(input);

    std::string item;

    while(std::getline(in, item, ','))
    {
        out.push_back(std::stoi(item));
    }

    return out;
}

int profile_grouped_gemm_fastgelu(int argc, char* argv[])
{
    if(!(argc == 14))
    {
        printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
        printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8)\n");
        printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg4: verification (0: no; 1: yes)\n");
        printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
        printf("arg6: print tensor value (0: no; 1: yes)\n");
        printf("arg7: time kernel (0=n0, 1=yes)\n");
        printf("arg8 to 13: Ms, Ns, Ks, StrideAs, StrideBs, StrideCs (e.g., 256,256 128,128 64,64 "
               "64,64 64,64 128,128)\n");
        exit(1);
    }

    const auto data_type       = static_cast<GemmDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);

    const auto Ms = argToIntArray(argv[8]);
    const auto Ns = argToIntArray(argv[9]);
    const auto Ks = argToIntArray(argv[10]);

    const auto StrideAs = argToIntArray(argv[11]);
    const auto StrideBs = argToIntArray(argv[12]);
    const auto StrideCs = argToIntArray(argv[13]);

    if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
    {
        ck::profiler::profile_grouped_gemm_fastgelu_impl<ck::half_t,
                                                         ck::half_t,
                                                         ck::half_t,
                                                         float,
                                                         ck::tensor_layout::gemm::RowMajor,
                                                         ck::tensor_layout::gemm::RowMajor,
                                                         ck::tensor_layout::gemm::RowMajor>(
            do_verification,
            init_method,
            do_log,
            time_kernel,
            Ms,
            Ns,
            Ks,
            StrideAs,
            StrideBs,
            StrideCs);
    }
    else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
    {
        ck::profiler::profile_grouped_gemm_fastgelu_impl<ck::half_t,
                                                         ck::half_t,
                                                         ck::half_t,
                                                         float,
                                                         ck::tensor_layout::gemm::RowMajor,
                                                         ck::tensor_layout::gemm::ColumnMajor,
                                                         ck::tensor_layout::gemm::RowMajor>(
            do_verification,
            init_method,
            do_log,
            time_kernel,
            Ms,
            Ns,
            Ks,
            StrideAs,
            StrideBs,
            StrideCs);
    }
    else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
    {
        ck::profiler::profile_grouped_gemm_fastgelu_impl<ck::half_t,
                                                         ck::half_t,
                                                         ck::half_t,
                                                         float,
                                                         ck::tensor_layout::gemm::ColumnMajor,
                                                         ck::tensor_layout::gemm::RowMajor,
                                                         ck::tensor_layout::gemm::RowMajor>(
            do_verification,
            init_method,
            do_log,
            time_kernel,
            Ms,
            Ns,
            Ks,
            StrideAs,
            StrideBs,
            StrideCs);
    }
    else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
    {
        ck::profiler::profile_grouped_gemm_fastgelu_impl<ck::half_t,
                                                         ck::half_t,
                                                         ck::half_t,
                                                         float,
                                                         ck::tensor_layout::gemm::ColumnMajor,
                                                         ck::tensor_layout::gemm::ColumnMajor,
                                                         ck::tensor_layout::gemm::RowMajor>(
            do_verification,
            init_method,
            do_log,
            time_kernel,
            Ms,
            Ns,
            Ks,
            StrideAs,
            StrideBs,
            StrideCs);
    }
    else
    {
        throw std::runtime_error("wrong! this GEMM data_type & layout is not implemented");
    }

    return 0;
}

} // anonymous namespace

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_gemm_fastgelu);