maxpool2d_bwd_common.hpp 10.4 KB
Newer Older
rocking's avatar
rocking committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool2d_fwd_nhwc_nhwc.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_index_pool_bwd_impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_maxpool_bwd.hpp"

template <typename InDataType,
          typename OutDataType,
          typename IndexDataType,
          typename ComputeDataType,
          typename DInDataType,
          typename DOutDataType,
          bool PropagateNan>
bool maxpool_bwd_test(bool do_verification,
                      bool time_kernel,
                      ck::index_t N,
                      ck::index_t C,
                      ck::index_t Y,
                      ck::index_t X,
                      ck::index_t Hi,
                      ck::index_t Wi,
                      ck::index_t window_stride_h,
                      ck::index_t window_stride_w,
                      ck::index_t in_left_pad_h,
                      ck::index_t in_left_pad_w,
                      ck::index_t in_right_pad_h,
                      ck::index_t in_right_pad_w)
{
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    using DevicePoolFwdInstance =
        ck::tensor_operation::device::DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C<
            InDataType,      // InDataType
            OutDataType,     // OutDataType
            IndexDataType,   // IndexDataType
            ComputeDataType, // ComputeDataType
            ck::ReduceTensorOp::MAX,
            true, // OutputIndex
            64,   // BlockSize
            64,   // ReduceMThreadClusterSize
            1,    // ReduceKThreadClusterSize
            4,    // ReduceMThreadSliceSize
            1,    // ReduceKThreadSliceSize
            1>;   // InSrcOutDstVectorSize

    using DeviceMaxPoolBwdInstance = ck::tensor_operation::device::
        DeviceIndexPoolBwdImpl<DOutDataType, IndexDataType, DInDataType, 4>;

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;

    const std::vector<ck::index_t> window_spatial_lengths{Y, X};
    const std::vector<ck::index_t> window_strides{window_stride_h, window_stride_w};
    const std::vector<ck::index_t> input_left_pads{in_left_pad_h, in_left_pad_w};
    const std::vector<ck::index_t> input_right_pads{in_right_pad_h, in_right_pad_w};

    auto f_host_tensor_descriptor =
        [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
            using namespace ck::literals;
            // reference need Tensor with NCHW order
            return HostTensorDescriptor({N_, C_, H, W}, {C_ * H * W, 1_uz, W * C_, C_});
        };

    // in
    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));

    // out
    Tensor<OutDataType> out_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));
    Tensor<OutDataType> out_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));

    // indices
    Tensor<IndexDataType> indices_n_c_ho_wo_device(f_host_tensor_descriptor(N, C, Ho, Wo));
    Tensor<IndexDataType> indices_n_c_ho_wo_host(f_host_tensor_descriptor(N, C, Ho, Wo));

    // dout
    Tensor<DOutDataType> dout_n_c_ho_wo(f_host_tensor_descriptor(N, C, Ho, Wo));

    // din
    Tensor<DInDataType> din_n_c_hi_wi_host(f_host_tensor_descriptor(N, C, Hi, Wi));
    Tensor<DInDataType> din_n_c_hi_wi_device(f_host_tensor_descriptor(N, C, Hi, Wi));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "out_n_c_ho_wo: " << out_n_c_ho_wo_host.mDesc << std::endl;
    std::cout << "indices_n_c_ho_wo: " << indices_n_c_ho_wo_host.mDesc << std::endl;
    std::cout << "dout_n_c_ho_wo: " << dout_n_c_ho_wo.mDesc << std::endl;
    std::cout << "din_n_c_hi_wi: " << din_n_c_hi_wi_host.mDesc << std::endl;

    in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
    dout_n_c_ho_wo.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{-1.0, 1.0});

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpaceSize());
    DeviceMem out_device_buf(sizeof(OutDataType) *
                             out_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
    DeviceMem indices_device_buf(sizeof(IndexDataType) *
                                 indices_n_c_ho_wo_device.mDesc.GetElementSpaceSize());
    DeviceMem dout_device_buf(sizeof(DOutDataType) * dout_n_c_ho_wo.mDesc.GetElementSpaceSize());
    DeviceMem din_device_buf(sizeof(DInDataType) *
                             din_n_c_hi_wi_device.mDesc.GetElementSpaceSize());

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    dout_device_buf.ToDevice(dout_n_c_ho_wo.mData.data());

    auto pool_fwd              = DevicePoolFwdInstance{};
    auto pool_fwd_invoker_ptr  = pool_fwd.MakeInvokerPointer();
    auto pool_fwd_argument_ptr = pool_fwd.MakeArgumentPointer(
        static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
        static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
        static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
        {N, C, Hi, Wi},
        window_spatial_lengths,
        {N, C, Ho, Wo},
        {C * Hi * Wi, 1, Wi * C, C},
        {C * Ho * Wo, 1, Wo * C, C},
        {C * Ho * Wo, 1, Wo * C, C},
        window_strides,
        input_left_pads,
        input_right_pads,
        {2, 3});

    if(!pool_fwd.IsSupportedArgument(pool_fwd_argument_ptr.get()))
    {
        throw std::runtime_error("wrong! pool_fwd with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time_fwd =
        pool_fwd_invoker_ptr->Run(pool_fwd_argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    auto pool_bwd              = DeviceMaxPoolBwdInstance{};
    auto pool_bwd_invoker_ptr  = pool_bwd.MakeInvokerPointer();
    auto pool_bwd_argument_ptr = pool_bwd.MakeArgumentPointer(
        static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
        static_cast<IndexDataType*>(indices_device_buf.GetDeviceBuffer()),
        static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
        dout_n_c_ho_wo.mDesc.GetElementSpaceSize(),
        din_n_c_hi_wi_device.mDesc.GetElementSpaceSize(),
        window_spatial_lengths,
        window_strides);

    if(!pool_bwd.IsSupportedArgument(pool_bwd_argument_ptr.get()))
    {
        throw std::runtime_error("wrong! pool_bwd with the specified compilation parameters does "
                                 "not support this problem");
    }

    size_t pool_bwd_workspace_sz = pool_bwd.GetWorkSpaceSize(pool_bwd_argument_ptr.get());
    DeviceMem pool_bwd_workspace_device_buf(pool_bwd_workspace_sz);
    pool_bwd.SetWorkSpacePointer(pool_bwd_argument_ptr.get(),
                                 pool_bwd_workspace_device_buf.GetDeviceBuffer());

    float ave_time_bwd =
        pool_bwd_invoker_ptr->Run(pool_bwd_argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    std::cout << "Pool fwd perf: " << ave_time_fwd << " ms" << std::endl;
    std::cout << "Pool bwd perf: " << ave_time_bwd << " ms" << std::endl;

    bool pass = true;

    if(do_verification)
    {
        using ReferencePoolingFwdInstance =
            ck::tensor_operation::host::ReferencePoolingFwd<4,
                                                            2,
                                                            InDataType,
                                                            OutDataType,
                                                            ComputeDataType,
                                                            IndexDataType,
                                                            ck::ReduceTensorOp::MAX,
                                                            PropagateNan,
                                                            true>;

        auto ref_pooling_fwd          = ReferencePoolingFwdInstance{};
        auto ref_pooling_fwd_invoker  = ref_pooling_fwd.MakeInvoker();
        auto ref_pooling_fwd_argument = ref_pooling_fwd.MakeArgument(in_n_c_hi_wi,
                                                                     out_n_c_ho_wo_host,
                                                                     indices_n_c_ho_wo_host,
                                                                     window_spatial_lengths,
                                                                     window_strides,
                                                                     input_left_pads,
                                                                     input_right_pads);
        ref_pooling_fwd_invoker.Run(ref_pooling_fwd_argument);

        using ReferencePoolingBwdInstance =
            ck::tensor_operation::host::ReferenceMaxPoolBwd<DOutDataType,
                                                            IndexDataType,
                                                            ComputeDataType,
                                                            DInDataType,
                                                            PassThrough>;

        auto ref_pooling_bwd          = ReferencePoolingBwdInstance{};
        auto ref_pooling_bwd_invoker  = ref_pooling_bwd.MakeInvoker();
        auto ref_pooling_bwd_argument = ref_pooling_bwd.MakeArgument(
            dout_n_c_ho_wo, indices_n_c_ho_wo_host, din_n_c_hi_wi_host, PassThrough{});

        ref_pooling_bwd_invoker.Run(ref_pooling_bwd_argument);

        out_device_buf.FromDevice(out_n_c_ho_wo_device.mData.data());
        indices_device_buf.FromDevice(indices_n_c_ho_wo_device.mData.data());
        din_device_buf.FromDevice(din_n_c_hi_wi_device.mData.data());

        pass = pass && ck::utils::check_err(out_n_c_ho_wo_device, out_n_c_ho_wo_host);
        pass = pass && ck::utils::check_err(indices_n_c_ho_wo_device, indices_n_c_ho_wo_host);
        pass = pass && ck::utils::check_err(din_n_c_hi_wi_device, din_n_c_hi_wi_host);
    }

    return (pass);
};