profile_gemm.hpp 9.75 KB
Newer Older
1
2
3
4
5
6
7
8
#pragma once
#include "device_gemm_instance.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

Chao Liu's avatar
Chao Liu committed
9
10
11
12
using DeviceGemmNoOpPtr = DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                        ck::tensor_operation::element_wise::PassThrough,
                                        ck::tensor_operation::element_wise::PassThrough>;

13
14
15
16
17
18
template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
Chao Liu's avatar
Chao Liu committed
19
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
20
21
22
23
24
25
26

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
27
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
28
29
30
31
32
33
34

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
Chao Liu's avatar
Chao Liu committed
35
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
36
37
38
39
40
41
42

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
43
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
44
45
46
47
48
49
50

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
Chao Liu's avatar
Chao Liu committed
51
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
52
53
54
55
56
57
58

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
59
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
60
61
62
63
64
65
66

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
Chao Liu's avatar
Chao Liu committed
67
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
68
69
70
71
72
73
74

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
75
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_gemm(int do_verification,
                  int init_method,
                  bool do_log,
                  int nrepeat,
                  int M,
                  int N,
                  int K,
                  int StrideA,
                  int StrideB,
                  int StrideC)
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

ltqin's avatar
ltqin committed
125
    std::size_t num_thread = std::thread::hardware_concurrency();
126
127
128
129
    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
130
131
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
132
133
        break;
    default:
ltqin's avatar
ltqin committed
134
135
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
136
    }
ltqin's avatar
ltqin committed
137
138
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
139
140
141

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
142
143
144
145
146
147
        host_gemm_mk_kn_mn(a_m_k,
                           b_k_n,
                           c_m_n_host_result,
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{});
148
149
150
151
152
153
154
155
156
157
158
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
159
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs;
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    ck::tensor_operation::device::device_gemm_instance::
        add_device_gemm_instance<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>(
            gemm_ptrs);

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
Chao Liu's avatar
Chao Liu committed
186
187
188
189
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{});
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * M * N * K;
            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                check_error(c_m_n_host_result, c_m_n_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "this device GEMM instance does not support this GEMM problem"
                      << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s" << std::endl;
}

} // namespace profiler
} // namespace ck