reduce.cpp 3.21 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <cstring>

#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/tensor/tensor_view.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/host_utility/device_prop.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

#include "reduce.hpp"

template <typename ADataType, typename AccDataType, typename BDataType>
void reference_reduce(const Tensor<ADataType>& a_m_n, Tensor<BDataType>& b_m)
{
    auto f = [&](auto m) {
        const int N = a_m_n.mDesc.GetLengths()[1];

        AccDataType v_acc = 0;

        for(int n = 0; n < N; ++n)
        {
            const ADataType v_a = a_m_n(m, n);

            v_acc += v_a;
        }

        b_m(m) = ck::type_convert<BDataType>(v_acc);
    };

    make_ParallelTensorFunctor(f, b_m.mDesc.GetLengths()[0])(std::thread::hardware_concurrency());
}

int main(int argc, char* argv[])
{
    using ADataType   = float;
    using AccDataType = float;
    using BDataType   = float;

    ck::index_t M = 3328;
    ck::index_t N = 4096;

    if(argc == 3)
    {
        M = std::stoi(argv[1]);
        N = std::stoi(argv[2]);
    }

    std::array<ck::index_t, 2> a_lengths{M, N};
    std::array<ck::index_t, 2> a_strides{N, 1};

Chao Liu's avatar
Chao Liu committed
58
59
    std::array<ck::index_t, 1> b_lengths{M};
    std::array<ck::index_t, 1> b_strides{1};
Chao Liu's avatar
Chao Liu committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    // host verify
    Tensor<ADataType> a_host(a_lengths, a_strides);
    Tensor<BDataType> b_host_ref(b_lengths, b_strides);
    Tensor<BDataType> b_host_dev(b_lengths, b_strides);

    ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_host);

    // reference
    reference_reduce<ADataType, AccDataType, BDataType>(a_host, b_host_ref);

    DeviceMem a_buf(sizeof(ADataType) * a_host.GetElementSpaceSize());
    DeviceMem b_buf(sizeof(BDataType) * b_host_ref.GetElementSpaceSize());

    a_buf.ToDevice(a_host.mData.data());

    constexpr ck::index_t kMPerBlock = 128;
    constexpr ck::index_t kNPerBlock = 128;

    constexpr ck::index_t kBlockSize = 256;
    ck::index_t kGridSize            = (M / kMPerBlock);

    std::cout << "grid size " << kGridSize << std::endl;

    const auto kernel =
        Reduce<ADataType, AccDataType, BDataType, kBlockSize, kMPerBlock, kNPerBlock>{};

    float ave_time = launch(ProgramServer{},
                            kernel,
                            kGridSize,
                            kBlockSize,
                            static_cast<ADataType*>(a_buf.GetDeviceBuffer()),
                            static_cast<BDataType*>(b_buf.GetDeviceBuffer()),
                            M,
                            N);

    b_buf.FromDevice(b_host_dev.mData.data());

    std::size_t num_btype = sizeof(ADataType) * M * N + sizeof(BDataType) * M;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;

    return !ck::utils::check_err(b_host_dev, b_host_ref);
}