"vscode:/vscode.git/clone" did not exist on "bb3cce9a93d6c1d2a6f504afedec988e014587bf"
main.cpp 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_fwd.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_fwd.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_instance {

using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
                                              ck::tensor_operation::element_wise::PassThrough,
                                              ck::tensor_operation::element_wise::PassThrough>;

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv2d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

int main(int argc, char* argv[])
{
    int data_type   = 0;
    int init_method = 0;

    // Conv shape
    ck::index_t N               = 128;
    ck::index_t K               = 256;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 2;
    ck::index_t conv_stride_w   = 2;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

    if(argc == 3)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);
    }
    else if(argc == 18)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);

        N               = std::stoi(argv[3]);
        K               = std::stoi(argv[4]);
        C               = std::stoi(argv[5]);
        Y               = std::stoi(argv[6]);
        X               = std::stoi(argv[7]);
        Hi              = std::stoi(argv[8]);
        Wi              = std::stoi(argv[9]);
        conv_stride_h   = std::stoi(argv[10]);
        conv_stride_w   = std::stoi(argv[11]);
        conv_dilation_h = std::stoi(argv[12]);
        conv_dilation_w = std::stoi(argv[13]);
        in_left_pad_h   = std::stoi(argv[14]);
        in_left_pad_w   = std::stoi(argv[15]);
        in_right_pad_h  = std::stoi(argv[16]);
        in_right_pad_w  = std::stoi(argv[17]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        exit(1);
    }

    auto Run = [&](auto input_type, auto wei_type, auto out_type) {
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        using ReferenceConvFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                                      WeiDataType,
                                                                                      OutDataType,
                                                                                      InElementOp,
                                                                                      WeiElementOp,
                                                                                      OutElementOp>;

        const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
        const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

        const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
        const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

        const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
        const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
        const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
        const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
        const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
        const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
        const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

        auto f_host_tensor_descriptor =
            [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
            };

        Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi));
        Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
        Tensor<OutDataType> out_n_k_ho_wo_host_result(f_host_tensor_descriptor(N, K, Ho, Wo));
        Tensor<OutDataType> out_n_k_ho_wo_device_result(f_host_tensor_descriptor(N, K, Ho, Wo));

        std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
        std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
        std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;

        switch(init_method)
        {
        case 0: break;
        case 1:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
            break;
        default:
            in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0, 1});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1, 1});
        }

        DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
        DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
        DeviceMem out_device_buf(sizeof(OutDataType) *
                                 out_n_k_ho_wo_device_result.mDesc.GetElementSpace());

        in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
        wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

        using PassThrough = ck::tensor_operation::element_wise::PassThrough;

        using DeviceConvFwdNoOpPtr =
            ck::tensor_operation::device::DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;

        // add device Conv instances
        std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;

        if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
        {
            ck::tensor_operation::device::device_conv2d_fwd_instance::
                add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        }
        else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
                          ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
                          ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
        {
            ck::tensor_operation::device::device_conv2d_fwd_instance::
                add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);

            ck::tensor_operation::device::device_conv2d_fwd_instance::
                add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        }
        else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ushort> &&
                          ck::is_same_v<ck::remove_cv_t<WeiDataType>, ushort> &&
                          ck::is_same_v<ck::remove_cv_t<OutDataType>, ushort>)
        {
            ck::tensor_operation::device::device_conv2d_fwd_instance::
                add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        }
        else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, int8_t> &&
                          ck::is_same_v<ck::remove_cv_t<WeiDataType>, int8_t> &&
                          ck::is_same_v<ck::remove_cv_t<OutDataType>, int8_t>)
        {
            ck::tensor_operation::device::device_conv2d_fwd_instance::
                add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        }

        if(conv_ptrs.size() <= 0)
        {
            throw std::runtime_error("wrong! no device Conv instance found");
        }

        auto ref_conv    = ReferenceConvFwdInstance{};
        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                  wei_k_c_y_x,
                                                  out_n_k_ho_wo_host_result,
                                                  conv_filter_strides,
                                                  conv_filter_dilations,
                                                  input_left_pads,
                                                  input_right_pads,
                                                  InElementOp{},
                                                  WeiElementOp{},
                                                  OutElementOp{});

        ref_invoker.Run(ref_argument);

        // profile device Conv instances
        bool success = false;
        for(auto& conv_ptr : conv_ptrs)
        {
            auto argument_ptr = conv_ptr->MakeArgumentPointer(
                static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                N,
                K,
                C,
                input_spatial_lengths,
                filter_spatial_lengths,
                output_spatial_lengths,
                conv_filter_strides,
                conv_filter_dilations,
                input_left_pads,
                input_right_pads,
                PassThrough{},
                PassThrough{},
                PassThrough{});

            auto invoker_ptr = conv_ptr->MakeInvokerPointer();

            if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
            {
                invoker_ptr->Run(argument_ptr.get(), 0);

                out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
                if(!check_out(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result))
                {
                    success = false;
                    break;
                }
                success = true;
            }
        }

        if(success)
        {
            std::cout << "test conv2d fwd : Pass" << std::endl;
        }
        else
        {
            std::cout << "test conv2d fwd: Fail " << std::endl;
        }
    };

    if(data_type == 0)
    {
        Run(float(), float(), float());
    }
    else if(data_type == 1)
    {
        Run(ck::half_t(), ck::half_t(), ck::half_t());
    }
    else if(data_type == 2)
    {
        Run(ushort(), ushort(), ushort());
    }
    else if(data_type == 3)
    {
        Run(int8_t(), int8_t(), int8_t());
    }
    else
    {
        return 1;
    }

    return 0;
}