elementwise_add_4d.cpp 4.44 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"

#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"

using F16 = ck::half_t;
using F32 = float;

using ABDataType             = F16;
using CDataType              = F16;
using EltwiseComputeDataType = F32;

using Add = ck::tensor_operation::binary_element_wise::Add;

22
23
24
25
26
27
28
29
30
31
32
using DeviceElementwiseAddInstance =
    ck::tensor_operation::device::DeviceBinaryElementwise<ABDataType,
                                                          ABDataType,
                                                          CDataType,
                                                          EltwiseComputeDataType,
                                                          Add,
                                                          4,
                                                          8,
                                                          8,
                                                          8,
                                                          8>;
rocking5566's avatar
rocking5566 committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

template <typename HostTensorA,
          typename HostTensorB,
          typename HostTensorC,
          typename ComputeDataType,
          typename Functor>
void host_elementwise4D(HostTensorC& C,
                        const HostTensorA& A,
                        const HostTensorB& B,
                        const std::vector<std::size_t>& shape,
                        Functor functor)
{
    using ctype = ck::remove_reference_t<decltype(C(0, 0, 0, 0))>;

    for(std::size_t n = 0; n < shape[0]; ++n)
        for(std::size_t c = 0; c < shape[1]; ++c)
            for(std::size_t h = 0; h < shape[2]; ++h)
                for(std::size_t w = 0; w < shape[3]; ++w)
                {
                    ComputeDataType a_val = static_cast<ComputeDataType>(A(n, c, h, w));
                    ComputeDataType b_val = static_cast<ComputeDataType>(B(n, c, h, w));
                    ComputeDataType c_val = 0;
                    functor(c_val, a_val, b_val);
                    C(n, c, h, w) = static_cast<ctype>(c_val);
                }
}

int main()
{
    bool do_verification = true;
    bool time_kernel     = false;

    std::vector<std::size_t> nchw = {4, 16, 32, 32};

rocking5566's avatar
rocking5566 committed
67
68
69
    Tensor<ABDataType> a(nchw);
    Tensor<ABDataType> b(nchw);
    Tensor<CDataType> c(nchw);
rocking5566's avatar
rocking5566 committed
70

rocking5566's avatar
rocking5566 committed
71
72
    a.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
    b.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
rocking5566's avatar
rocking5566 committed
73

rocking5566's avatar
rocking5566 committed
74
75
76
    DeviceMem a_device_buf(sizeof(ABDataType) * a.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(ABDataType) * b.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c.mDesc.GetElementSpace());
rocking5566's avatar
rocking5566 committed
77

rocking5566's avatar
rocking5566 committed
78
79
    a_device_buf.ToDevice(a.mData.data());
    b_device_buf.ToDevice(b.mData.data());
rocking5566's avatar
rocking5566 committed
80
81
82

    auto broadcastAdd = DeviceElementwiseAddInstance{};
    auto argument     = broadcastAdd.MakeArgumentPointer(
rocking5566's avatar
rocking5566 committed
83
84
85
86
87
88
89
        a_device_buf.GetDeviceBuffer(),
        b_device_buf.GetDeviceBuffer(),
        c_device_buf.GetDeviceBuffer(),
        std::vector<ck::index_t>{nchw.begin(), nchw.end()},
        std::vector<ck::index_t>{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()},
        std::vector<ck::index_t>{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()},
        std::vector<ck::index_t>{c.mDesc.GetStrides().begin(), c.mDesc.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
90
91
92
93
94
        Add{});

    if(!broadcastAdd.IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error("The runtime parameters seems not supported by the "
95
                                 "DeviceBinaryElementwise instance, exiting!");
rocking5566's avatar
rocking5566 committed
96
97
98
99
100
101
102
103
104
105
106
    };

    auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
    float ave_time =
        broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});

    std::cout << "Perf: " << ave_time << " ms" << std::endl;

    bool pass = true;
    if(do_verification)
    {
rocking5566's avatar
rocking5566 committed
107
108
        c_device_buf.FromDevice(c.mData.data());
        Tensor<CDataType> host_c(nchw);
rocking5566's avatar
rocking5566 committed
109
110
111
112
113

        host_elementwise4D<Tensor<ABDataType>,
                           Tensor<ABDataType>,
                           Tensor<CDataType>,
                           EltwiseComputeDataType,
rocking5566's avatar
rocking5566 committed
114
                           Add>(host_c, a, b, nchw, Add{});
rocking5566's avatar
rocking5566 committed
115

rocking5566's avatar
rocking5566 committed
116
        pass &=
117
            ck::utils::check_err(c.mData, host_c.mData, "Error: Incorrect results c", 1e-3, 1e-3);
rocking5566's avatar
rocking5566 committed
118
119
120
121
    }

    return pass ? 0 : 1;
}