driver.cpp 33.9 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
7
8
#include "config.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "device.hpp"
Chao Liu's avatar
Chao Liu committed
9
#include "conv_common.hpp"
Chao Liu's avatar
Chao Liu committed
10
#include "device_convolution_direct_v2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
11
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
12
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
15
16
#include "device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp"
#include "device_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
17

18
19
using namespace ck;

Chao Liu's avatar
Chao Liu committed
20
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
21
22
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
23
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
24
    {
Chao Liu's avatar
Chao Liu committed
25
        return 1;
Chao Liu's avatar
Chao Liu committed
26
27
28
    }
};

Chao Liu's avatar
Chao Liu committed
29
30
31
32
33
34
35
36
37
38
39
40
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

41
42
43
44
45
46
47
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

48
        auto f_acc = [](auto a, auto b) { return 100 * a + b; };
49

50
        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
51
52
53
    }
};

Chao Liu's avatar
Chao Liu committed
54
55
56
57
58
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
59
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
60
61
62
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
63
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
64
65
66
67
68
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
69
70
71
72
73
74
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
75
76
77
78
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
93
94
95
96
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
97
98
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
99
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
100
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
101
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
102
103
104
105
106
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

107
108
109
110
111
112
113
template <class TIn,
          class TWei,
          class TOut,
          class ConvStrides,
          class ConvDilations,
          class LowerPads,
          class UpperPads>
114
115
116
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
117
118
                             ConvStrides,
                             ConvDilations,
119
120
                             LowerPads,
                             UpperPads)
Chao Liu's avatar
Chao Liu committed
121
{
Chao Liu's avatar
Chao Liu committed
122
123
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
124

Chao Liu's avatar
Chao Liu committed
125
126
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
127

Chao Liu's avatar
Chao Liu committed
128
129
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
130
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
131
        {
Chao Liu's avatar
Chao Liu committed
132
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
133
            {
134
                int hi = ho * ConvStrides{}[0] + y * ConvDilations{}[0] - h_pad_low;
Chao Liu's avatar
Chao Liu committed
135
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
136
                {
137
                    int wi = wo * ConvStrides{}[1] + x * ConvDilations{}[1] - w_pad_low;
138
139
140
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
141
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
142
                    }
Chao Liu's avatar
Chao Liu committed
143
144
145
                }
            }
        }
146
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
147
148
149
    };

    auto f_par = make_ParallelTensorFunctor(f,
150
151
152
153
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
154

Chao Liu's avatar
Chao Liu committed
155
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
156
157
}

158
159
160
161
162
163
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
164
{
Chao Liu's avatar
Chao Liu committed
165
166
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
167

Chao Liu's avatar
Chao Liu committed
168
169
170
171
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
172

Chao Liu's avatar
Chao Liu committed
173
174
175
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
176

177
178
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
179

Chao Liu's avatar
Chao Liu committed
180
181
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
182

Chao Liu's avatar
Chao Liu committed
183
184
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
185

Chao Liu's avatar
Chao Liu committed
186
187
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
188

Chao Liu's avatar
Chao Liu committed
189
190
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
191

192
193
194
195
196
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
197

Chao Liu's avatar
Chao Liu committed
198
199
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
200
        {
Chao Liu's avatar
Chao Liu committed
201
202
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
203
            {
Chao Liu's avatar
Chao Liu committed
204
                int wi = WoPerTile * wtile + i - w_pad_low;
205
206
207
208

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
209
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
210
211
212
                }
                else
                {
213
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
214
                }
Chao Liu's avatar
Chao Liu committed
215
216
217
218
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
271
272
273
    };

    auto f_wei_transform = [&](auto k, auto c) {
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
329
330
    };

Chao Liu's avatar
Chao Liu committed
331
332
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
333
        {
Chao Liu's avatar
Chao Liu committed
334
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
335
336
337
338
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
339
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
340
341
                }

Chao Liu's avatar
Chao Liu committed
342
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
343
344
345
346
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
372
373
    };

Chao Liu's avatar
Chao Liu committed
374
375
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
376
        {
Chao Liu's avatar
Chao Liu committed
377
378
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
379
            {
380
                std::size_t wo = WoPerTile * wtile + i;
381
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
382
383
384
385
386
387
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
388
389
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
390
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
391
392
393
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
394
395
396
397
398
399
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
400
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
401
402
403
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
404
405
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
406
407
408
409
410
411
412
413
414
415
416
417
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
418
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
419
{
Chao Liu's avatar
Chao Liu committed
420
421
#if 0
    constexpr index_t N  = 8;
Chao Liu's avatar
Chao Liu committed
422
    constexpr index_t C  = 16;
Chao Liu's avatar
Chao Liu committed
423
424
425
426
427
428
429
430
    constexpr index_t HI = 3;
    constexpr index_t WI = 18;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
431
#elif 0
432
    // 3x3, 34x34
433
    constexpr index_t N  = 128;
434
    constexpr index_t C  = 256;
435
436
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
437
438
439
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
440

441
442
443
    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
444
445
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
446
#elif 0
447
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
448
449
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
450
451
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
Chao Liu's avatar
Chao Liu committed
452
453
454
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
455
456
457

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
458
#elif 0
Chao Liu's avatar
Chao Liu committed
459
460
461
462
463
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
464
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
465
466
467
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

Chao Liu's avatar
Chao Liu committed
468
    using ConvStrides   = Sequence<1, 1>;
469
470
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
471
472
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
473
#elif 0
Chao Liu's avatar
Chao Liu committed
474
    // 1x1 filter, 28x28 image
475
476
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
Chao Liu's avatar
Chao Liu committed
477
478
479
480
481
482
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
483
484
485
    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
486
487
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
488
489
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
490
491
492
493
494
495
496
497
498
499
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
500
501
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
502
503
504
505
506
507
508
509
510
511
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
512
#elif 0
513
514
515
516
517
518
519
520
521
522
523
    // 5x5 filter, 20x86 image
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
524
525
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
526
527
528
529
530
531
532
533
534
535
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
536
537
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
538
539
540
541
542
543
544
545
546
547
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
548
#elif 0
549
    // 3x3 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
550
    constexpr index_t N  = 128;
551
    constexpr index_t C  = 256;
Chao Liu's avatar
Chao Liu committed
552
553
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
554
555
556
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
557
558
559

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
560
#elif 0
561
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
562
563
564
565
566
567
568
569
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

570
571
572
    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
573
574
575
576
577
578
579
580
581
582
583
584
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 7x7 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 2048;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

585
586
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
587
#elif 0
588
589
    // 1x1 filter, 73x73 image
    constexpr index_t N  = 128;
Chao Liu's avatar
Chao Liu committed
590
    constexpr index_t C  = 512;
591
592
593
594
595
596
    constexpr index_t HI = 73;
    constexpr index_t WI = 73;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

Chao Liu's avatar
Chao Liu committed
597
598
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
599
#elif 0
Chao Liu's avatar
Chao Liu committed
600
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
601
    // cudnn@V100 68%, ck@V100 72%, ck@P100 52%, ck@VII 42%
Chao Liu's avatar
Chao Liu committed
602
603
604
605
606
607
608
609
610
611
612
613
614
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
615
#elif 0
Chao Liu's avatar
Chao Liu committed
616
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
617
    // cudnn@V100 77%, ck@V100 76%, ck@P100 79%, ck@VII 51%
Chao Liu's avatar
Chao Liu committed
618
619
620
621
622
623
624
625
626
627
628
629
630
    constexpr index_t N  = 128;
    constexpr index_t C  = 2048;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
631
#elif 0
Chao Liu's avatar
Chao Liu committed
632
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
633
    // cudnn@V100 82%, ck@V100 76%, ck@P100 67%, ck@VII 64%
Chao Liu's avatar
Chao Liu committed
634
635
636
637
638
639
640
641
642
643
644
645
646
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
647
#elif 0
Chao Liu's avatar
Chao Liu committed
648
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
649
    // cudnn@V100 83%, ck@V100 75%, ck@P100 78%, ck@VII 65%
Chao Liu's avatar
Chao Liu committed
650
651
652
653
654
655
656
657
658
659
660
661
662
    constexpr index_t N  = 128;
    constexpr index_t C  = 1280;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
663
#elif 0
Chao Liu's avatar
Chao Liu committed
664
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
665
    // cudnn@V100 62%, ck@V100 68%, ck@P100 70%, ck@VII 50%
Chao Liu's avatar
Chao Liu committed
666
667
668
669
670
671
672
673
674
675
676
677
678
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
679
#elif 0
Chao Liu's avatar
Chao Liu committed
680
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
681
    // cudnn@V100 74%, ck@V100 57%, ck@P100 78%, ck@VII 61%
Chao Liu's avatar
Chao Liu committed
682
683
684
685
686
687
688
689
690
691
692
693
694
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
695
#elif 0
Chao Liu's avatar
Chao Liu committed
696
    // 1x1 filter, 28x28 image
Chao Liu's avatar
Chao Liu committed
697
    // cudnn@V100 86%, ck@V100 84%, ck@P100 80%, ck@VII 69%
Chao Liu's avatar
Chao Liu committed
698
699
700
701
702
703
704
705
706
707
708
709
710
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
711
#elif 0
Chao Liu's avatar
Chao Liu committed
712
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
713
    // cudnn@V100 71%, ck@V100 55%, ck@P100 70%, ck@VII 62%
Chao Liu's avatar
Chao Liu committed
714
715
716
717
718
719
720
721
722
723
724
725
726
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
727
#elif 0
Chao Liu's avatar
Chao Liu committed
728
    // 3x3 filter, 2x2 stride, 35x35 input, 17x17 output
Chao Liu's avatar
Chao Liu committed
729
    // cudnn@V100 90%, ck@V100 93%, ck@P100 83%, ck@VII 81%
Chao Liu's avatar
Chao Liu committed
730
731
732
733
734
735
736
737
738
739
740
741
742
    constexpr index_t N  = 128;
    constexpr index_t C  = 288;
    constexpr index_t HI = 35;
    constexpr index_t WI = 35;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
743
#elif 0
Chao Liu's avatar
Chao Liu committed
744
    // 1x1 filter, 17x17 input
Chao Liu's avatar
Chao Liu committed
745
    // cudnn@V100 81%, ck@V100 76%, ck@P100 70%, ck@VII 76%
Chao Liu's avatar
Chao Liu committed
746
747
748
749
750
751
752
753
754
755
756
757
758
    constexpr index_t N  = 128;
    constexpr index_t C  = 768;
    constexpr index_t HI = 17;
    constexpr index_t WI = 17;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
759
#elif 0
Chao Liu's avatar
Chao Liu committed
760
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
761
    // cudnn@V100 73%, ck@V100 71%, ck@P100 70%, ck@VII 64%
Chao Liu's avatar
Chao Liu committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
777
    // cudnn@V100 73%, ck@V100 72%, ck@P100 79%, ck@VII 75%
Chao Liu's avatar
Chao Liu committed
778
779
780
781
782
783
784
785
786
787
788
789
790
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
791
#elif 1
Chao Liu's avatar
Chao Liu committed
792
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
793
    // cudnn@V100 49%, ck@V100 50%, ck@P100 61%, ck@VII 52%
Chao Liu's avatar
Chao Liu committed
794
795
796
797
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
Chao Liu's avatar
Chao Liu committed
798
799
800
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
Chao Liu's avatar
Chao Liu committed
801
802
803
804

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
805
806
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
807
#endif
Chao Liu's avatar
Chao Liu committed
808

809
810
811
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
812
813
    auto in_nchw_desc  = make_ConstantTensorDescriptor_packed(Sequence<N, C, HI, WI>{});
    auto wei_kcyx_desc = make_ConstantTensorDescriptor_packed(Sequence<K, C, Y, X>{});
814
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
815
        in_nchw_desc, wei_kcyx_desc, ConvStrides{}, ConvDilations{}, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
816

Chao Liu's avatar
Chao Liu committed
817
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
818
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
819
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
820

Chao Liu's avatar
Chao Liu committed
821
822
    using in_data_t  = float;
    using out_data_t = float;
823
824
825
826
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
827

Chao Liu's avatar
Chao Liu committed
828
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
829

Chao Liu's avatar
Chao Liu committed
830
831
832
833
834
835
836
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
837
    index_t nrepeat      = atoi(argv[2]);
838
839
840

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
841
#if 0
842
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
843
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
844
845
846
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
847
848
849
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
850
#elif 1
851
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
852
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
853
#elif 0
854
855
856
857
858
859
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
860
#endif
861
    }
Chao Liu's avatar
Chao Liu committed
862

Chao Liu's avatar
Chao Liu committed
863
#if 1
Chao Liu's avatar
Chao Liu committed
864
#if 0
Chao Liu's avatar
Chao Liu committed
865
    device_convolution_direct_v2_nchw_kcyx_nkhw
Chao Liu's avatar
Chao Liu committed
866
#elif 0
867
    device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
868
#elif 0
Chao Liu's avatar
Chao Liu committed
869
    device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw
870
#elif 0
Chao Liu's avatar
Chao Liu committed
871
    device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
Chao Liu's avatar
Chao Liu committed
872
#elif 0
Chao Liu's avatar
Chao Liu committed
873
    device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw
Chao Liu's avatar
Chao Liu committed
874
875
#elif 0
    device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw
Chao Liu's avatar
Chao Liu committed
876
#elif 1
Chao Liu's avatar
Chao Liu committed
877
    device_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw
878
#endif
879
880
881
882
883
884
885
886
887
    (in_nchw_desc,
     in_nchw,
     wei_kcyx_desc,
     wei_kcyx,
     out_nkhw_desc,
     out_nkhw_device,
     ConvStrides{},
     ConvDilations{},
     nrepeat);
888

889
#elif 0
Chao Liu's avatar
Chao Liu committed
890
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
Chao Liu's avatar
Chao Liu committed
891
                                                             in_nchw,
Chao Liu's avatar
Chao Liu committed
892
893
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
Chao Liu's avatar
Chao Liu committed
894
895
896
897
898
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
899
#endif
Chao Liu's avatar
Chao Liu committed
900

901
    if(do_verification)
902
    {
Chao Liu's avatar
Chao Liu committed
903
#if 1
904
905
        if(Y == 3 && X == 3 && ConvStrides{}[0] == 1 && ConvStrides{}[1] == 1 &&
           ConvDilations{}[0] == 1 && ConvDilations{}[1] == 1)
906
        {
Chao Liu's avatar
Chao Liu committed
907
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
908
909
        }
        else
Chao Liu's avatar
Chao Liu committed
910
#endif
911
        {
912
913
914
915
916
917
918
            host_direct_convolution(in_nchw,
                                    wei_kcyx,
                                    out_nkhw_host,
                                    ConvStrides{},
                                    ConvDilations{},
                                    lower_pads,
                                    upper_pads);
919
920
        }
        check_error(out_nkhw_host, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
921

Chao Liu's avatar
Chao Liu committed
922
#if 0
923
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
924
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
925
926
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
927
#endif
928
    }
929
}