profile_grouped_conv_fwd.cpp 9.15 KB
Newer Older
1
2
3
4
5
6
7
8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

9
#include "profiler/profile_grouped_conv_fwd_impl.hpp"
10
#include "profiler_operation_registry.hpp"
11
12
13
14
15
16

namespace {

enum struct ConvLayout
{
    GNHWC_GKYXC_GNHWK, // 0
Chao Liu's avatar
Chao Liu committed
17
    NHWGC_GKYXC_NHWGK, // 1
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
};

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

static void print_helper_msg()
{
    std::cout
        // clang-format off
        << "arg1: tensor operation (grouped_conv_fwd: Grouped Convolution Forward)\n"
        << "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
        << "                 1: Input fp16, Weight fp16, Output fp16\n"
        << "                 2: Input bf16, Weight bf16, Output bf16\n"
        << "                 3: Input int8, Weight int8, Output int8)\n"
        << "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
Chao Liu's avatar
Chao Liu committed
38
        << "                     1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        << "arg4: verification (0: no, 1: yes)\n"
        << "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
        << "arg6: print tensor value (0: no; 1: yes)\n"
        << "arg7: time kernel (0: no, 1: yes)\n"
        << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
    // clang-format on
}

} // namespace

int profile_grouped_conv_fwd(int argc, char* argv[])
{
    // 8 for control, 1 for num_dim_spatial
    if(argc < 9)
    {
        print_helper_msg();
        return 1;
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<ConvLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);
    const int num_dim_spatial  = std::stoi(argv[8]);

    // 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
    if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
    {
        print_helper_msg();
        return 1;
    }

    const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);

    using F32  = float;
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;
    using INT8 = int8_t;

    //
    using GNWC   = ck::tensor_layout::convolution::GNWC;
    using GNHWC  = ck::tensor_layout::convolution::GNHWC;
    using GNDHWC = ck::tensor_layout::convolution::GNDHWC;

    using GKXC   = ck::tensor_layout::convolution::GKXC;
    using GKYXC  = ck::tensor_layout::convolution::GKYXC;
    using GKZYXC = ck::tensor_layout::convolution::GKZYXC;

    using GNWK   = ck::tensor_layout::convolution::GNWK;
    using GNHWK  = ck::tensor_layout::convolution::GNHWK;
    using GNDHWK = ck::tensor_layout::convolution::GNDHWK;

    //
    using NWGC   = ck::tensor_layout::convolution::NWGC;
    using NHWGC  = ck::tensor_layout::convolution::NHWGC;
    using NDHWGC = ck::tensor_layout::convolution::NDHWGC;

    using NWGK   = ck::tensor_layout::convolution::NWGK;
    using NHWGK  = ck::tensor_layout::convolution::NHWGK;
    using NDHWGK = ck::tensor_layout::convolution::NDHWGK;

    constexpr auto I1 = ck::Number<1>{};
    constexpr auto I2 = ck::Number<2>{};
    constexpr auto I3 = ck::Number<3>{};

    auto profile = [&](auto num_dim_spatial_tmp,
                       auto in_layout,
                       auto wei_layout,
                       auto out_layout,
                       auto in_type,
                       auto wei_type,
                       auto out_type) {
        constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;

        using InLayout  = decltype(in_layout);
        using WeiLayout = decltype(wei_layout);
        using OutLayout = decltype(out_layout);

        using InDataType  = decltype(in_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
                                                                InLayout,
                                                                WeiLayout,
                                                                OutLayout,
                                                                InDataType,
                                                                WeiDataType,
                                                                OutDataType>(
            do_verification, init_method, do_log, time_kernel, params);

        return pass ? 0 : 1;
    };

    // GNHWC_GKYXC_GNHWK
    if(num_dim_spatial == 1 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{});
        }
    }
    else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{});
        }
    }
    else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{});
        }
    }
Chao Liu's avatar
Chao Liu committed
193
194
    // NHWGC_GKYXC_NHWGK
    else if(num_dim_spatial == 1 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
195
196
197
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
198
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{});
199
200
201
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
202
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{});
203
204
205
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
206
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{});
207
208
209
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
210
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{});
211
212
        }
    }
Chao Liu's avatar
Chao Liu committed
213
    else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
214
215
216
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
217
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
218
219
220
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
221
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
222
223
224
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
225
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{});
226
227
228
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
229
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{});
230
231
        }
    }
Chao Liu's avatar
Chao Liu committed
232
    else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
233
234
235
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
236
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
237
238
239
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
240
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
241
242
243
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
244
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{});
245
246
247
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
248
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{});
249
250
251
252
253
254
255
        }
    }

    std::cout << "this data_type & layout is not implemented" << std::endl;

    return 1;
}
256
257

REGISTER_PROFILER_OPERATION("grouped_conv_fwd", profile_grouped_conv_fwd)