contraction_xdl_fp32.cpp 15.1 KB
Newer Older
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

Chao Liu's avatar
Chao Liu committed
4
5
6
7
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
8
9
10
11
12
13
14
15
16
17
18

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = float;
using BDataType   = float;
using CDataType   = float;
using AccDataType = float;

Chao Liu's avatar
Chao Liu committed
35
36
37
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
Chao Liu's avatar
Chao Liu committed
38
39
40
41
42
43
44
45

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

// clang-format off
Chao Liu's avatar
Chao Liu committed
46
47
48
49
50
51
using DeviceOpInstance = ck::tensor_operation::device::
        //############################| NumDimM| NumDimN| NumDimK| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //############################|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //############################|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //############################|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContraction_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,   F32,     F32,      F32, PassThrough, PassThrough, PassThrough,    GemmDefault,        1,   256,   256,   128,    16,   4,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,              4>;
Chao Liu's avatar
Chao Liu committed
52
53
// clang-format on

Chao Liu's avatar
Chao Liu committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
          ck::index_t NumDimN,
          ck::index_t NumDimK,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
    // Argument
    struct Argument : public ck::tensor_operation::device::BaseArgument
    {
        Argument(const Tensor<ADataType>& a_ms_ks,
                 const Tensor<BDataType>& b_ks_ns,
                 Tensor<CDataType>& c_ms_ns,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
            : a_ms_ks_{a_ms_ks},
              b_ks_ns_{b_ks_ns},
              c_ms_ns_{c_ms_ns},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
        {
        }

        const Tensor<ADataType>& a_ms_ks_;
        const Tensor<BDataType>& b_ks_ns_;
        Tensor<CDataType>& c_ms_ns_;

        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
    };

    // Invoker
    struct Invoker : public ck::tensor_operation::device::BaseInvoker
    {
        using Argument = ReferenceContraction_M2_N2_K2::Argument;

        float Run(const Argument& arg)
        {
            auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
                const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
                const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];

                AccDataType v_acc = 0;

                for(int k0 = 0; k0 < K0; ++k0)
                {
                    for(int k1 = 0; k1 < K1; ++k1)
                    {
                        AccDataType v_a;
                        AccDataType v_b;

                        arg.a_element_op_(
                            v_a, static_cast<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
                        arg.b_element_op_(
                            v_b, static_cast<const AccDataType>(arg.b_ks_ns_(k0, k1, n0, n1)));

                        v_acc += v_a * v_b;
                    }
                }

                AccDataType v_c;

                arg.c_element_op_(v_c, v_acc);

                arg.c_ms_ns_(m0, m1, n0, n1) = v_c;
            };

            make_ParallelTensorFunctor(f_ms_ns,
                                       arg.c_ms_ns_.mDesc.GetLengths()[0],
                                       arg.c_ms_ns_.mDesc.GetLengths()[1],
                                       arg.c_ms_ns_.mDesc.GetLengths()[2],
                                       arg.c_ms_ns_.mDesc.GetLengths()[3])(
                std::thread::hardware_concurrency());

            return 0;
        }

        float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
                  const StreamConfig& /* stream_config */ = StreamConfig{}) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg));
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
    {
        return true;
    }

    static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
                             const Tensor<BDataType>& b_ks_ns,
                             Tensor<CDataType>& c_ms_ns,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
    {
        return Argument{a_ms_ks, b_ks_ns, c_ms_ns, a_element_op, b_element_op, c_element_op};
    }

    static auto MakeInvoker() { return Invoker{}; }

    virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
    {
        return std::make_unique<Invoker>(Invoker{});
    }

    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "ReferenceContraction_M2_N2_K2"
            << std::endl;
        // clang-format on

        return str.str();
    }
};

using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
                                                          NumDimN,
                                                          NumDimK,
                                                          ADataType,
                                                          BDataType,
                                                          CDataType,
                                                          AccDataType,
                                                          AElementOp,
                                                          BElementOp,
                                                          CElementOp>;
Chao Liu's avatar
Chao Liu committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
Chao Liu's avatar
Chao Liu committed
216
        printf("arg3: time kernel (0=no, 1=yes)\n");
Chao Liu's avatar
Chao Liu committed
217
218
219
        exit(0);
    }

Chao Liu's avatar
Chao Liu committed
220
    // A[M0, M1, K0, K1]
Chao Liu's avatar
format  
Chao Liu committed
221
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
Chao Liu's avatar
Chao Liu committed
222
223
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[K0, K1, N0, N1]
Chao Liu's avatar
format  
Chao Liu committed
224
    std::vector<ck::index_t> b_ks_ns_lengths{32, 64, 32, 64};
Chao Liu's avatar
Chao Liu committed
225
226
    std::vector<ck::index_t> b_ks_ns_strides{128, 1, 524288, 4096};
    // C[M0, M1, N0, N1]
Chao Liu's avatar
format  
Chao Liu committed
227
    std::vector<ck::index_t> c_ms_ns_lengths{30, 128, 32, 64};
Chao Liu's avatar
Chao Liu committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    std::vector<ck::index_t> c_ms_ns_strides{524288, 4096, 128, 1};

    Tensor<ADataType> a_ms_ks(
        std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
        std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
    Tensor<BDataType> b_ks_ns(
        std::vector<std::size_t>(b_ks_ns_lengths.begin(), b_ks_ns_lengths.end()),
        std::vector<std::size_t>(b_ks_ns_strides.begin(), b_ks_ns_strides.end()));
    Tensor<CDataType> c_ms_ns_host_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()),
        std::vector<std::size_t>(c_ms_ns_strides.begin(), c_ms_ns_strides.end()));
    Tensor<CDataType> c_ms_ns_device_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()),
        std::vector<std::size_t>(c_ms_ns_strides.begin(), c_ms_ns_strides.end()));

    std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
    std::cout << "b_ks_ns: " << b_ks_ns.mDesc << std::endl;
    std::cout << "c_ms_ns: " << c_ms_ns_host_result.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
246
247
248
249
250

    switch(init_method)
    {
    case 0: break;
    case 1:
Chao Liu's avatar
Chao Liu committed
251
252
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
Chao Liu's avatar
Chao Liu committed
253
254
        break;
    case 2:
Chao Liu's avatar
Chao Liu committed
255
256
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
Chao Liu's avatar
Chao Liu committed
257
258
        break;
    default:
Chao Liu's avatar
Chao Liu committed
259
260
        a_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
Chao Liu's avatar
Chao Liu committed
261
262
    }

Chao Liu's avatar
Chao Liu committed
263
264
265
266
267
268
    DeviceMem a_ms_ks_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
    DeviceMem b_ks_ns_device_buf(sizeof(BDataType) * b_ks_ns.mDesc.GetElementSpace());
    DeviceMem c_ms_ns_device_buf(sizeof(CDataType) * c_ms_ns_device_result.mDesc.GetElementSpace());

    a_ms_ks_device_buf.ToDevice(a_ms_ks.mData.data());
    b_ks_ns_device_buf.ToDevice(b_ks_ns.mData.data());
Chao Liu's avatar
Chao Liu committed
269

Chao Liu's avatar
Chao Liu committed
270
271
    // set zero
    c_ms_ns_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
272
273
274
275
276

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

Chao Liu's avatar
Chao Liu committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    // device operation
    auto op       = DeviceOpInstance{};
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(static_cast<ADataType*>(a_ms_ks_device_buf.GetDeviceBuffer()),
                                    static_cast<BDataType*>(b_ks_ns_device_buf.GetDeviceBuffer()),
                                    static_cast<CDataType*>(c_ms_ns_device_buf.GetDeviceBuffer()),
                                    a_ms_ks_lengths,
                                    a_ms_ks_strides,
                                    b_ks_ns_lengths,
                                    b_ks_ns_strides,
                                    c_ms_ns_lengths,
                                    c_ms_ns_strides,
                                    a_element_op,
                                    b_element_op,
                                    c_element_op);

    if(!op.IsSupportedArgument(argument))
Chao Liu's avatar
Chao Liu committed
294
    {
Chao Liu's avatar
Chao Liu committed
295
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
Chao Liu's avatar
Chao Liu committed
296
297
298
299
300
301

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

Chao Liu's avatar
Chao Liu committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    ck::index_t M = std::accumulate(c_ms_ns_lengths.begin(),
                                    c_ms_ns_lengths.begin() + NumDimM,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

    ck::index_t N = std::accumulate(c_ms_ns_lengths.begin() + NumDimM,
                                    c_ms_ns_lengths.begin() + NumDimM + NumDimN,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

    ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
                                    a_ms_ks_lengths.begin() + NumDimM + NumDimK,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

Chao Liu's avatar
Chao Liu committed
317
318
319
320
321
322
323
324
325
    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
Chao Liu's avatar
Chao Liu committed
326
              << op.GetTypeString() << std::endl;
Chao Liu's avatar
Chao Liu committed
327

Chao Liu's avatar
Chao Liu committed
328
    c_ms_ns_device_buf.FromDevice(c_ms_ns_device_result.mData.data());
Chao Liu's avatar
Chao Liu committed
329
330
331

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
332
        auto ref_gemm    = ReferenceOpInstance{};
Chao Liu's avatar
Chao Liu committed
333
334
335
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
Chao Liu's avatar
Chao Liu committed
336
            a_ms_ks, b_ks_ns, c_ms_ns_host_result, a_element_op, b_element_op, c_element_op);
Chao Liu's avatar
Chao Liu committed
337
338
339

        ref_invoker.Run(ref_argument);

Chao Liu's avatar
Chao Liu committed
340
        return ck::utils::check_err(c_ms_ns_device_result.mData, c_ms_ns_host_result.mData) ? 0 : 1;
Chao Liu's avatar
Chao Liu committed
341
342
343
344
    }

    return 0;
}